Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Auditory receptive fields in primate superior colliculus shift with changes in eye position

Abstract

The process by which sensory signals are transformed into commands for the control of movement is poorly understood. A potential site for such a transformation is the superior colliculus (SC), which receives auditory, visual and somatosensory inputs1–3 and contains neurones that discharge before saccadic eye movements4–6. Along the primary sensory pathways, signals coding the spatial location of auditory, visual and somatosensory targets are based on distinctly different coordinate systems, and it is not known whether each type of sensory input uses a separate motor pathway or if they are converted into a common coordinate system in order to share a single pre-motor circuit. Sensory neurones in the SC have spatially restricted receptive fields (RFs) and are organized into maps across the collicular surface7–9. Acute experiments have shown a rough correspondence between the spatial positions of RFs of neurones encountered along a single dorsal–ventral penetration of the colliculus, regardless of the modality of the effective stimulus10–14, suggesting that auditory, visual and somatosensory maps might be in register. However, in these conditions the head-centred auditory system and the retinotopic visual system are aligned because the eyes are in the primary orbital position15. Moreover, other data have suggested16–18 that the primate SC is organized in motor, not sensory, coordinates, although in the cat, eye position was found to have no effect on auditory receptive fields19. We therefore sought here to determine what happens to the registration of the auditory and visual maps in the alert, behaving animal. Monkeys, with heads fixed, were trained to make delayed saccadic eye movements to auditory or visual targets from one of three initial fixation points while the activity of single neurones was recorded extracellularly. We found that the auditory receptive fields shifted with changes in eye position, allowing the auditory and visual maps to remain in register.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Harting, J. K. J. comp. Neurol. 173, 583–612 (1977).

    Article  CAS  Google Scholar 

  2. Edwards, S. B., Ginsburgh, C. L., Henkel, C. K. & Stein, B. E. J. comp. Neurol. 184, 309–330 (1979).

    Article  CAS  Google Scholar 

  3. Fries, W. & Distel, H. Invest. Ophthal. vis. Sci. Suppl. 20, 74 (1981).

    Google Scholar 

  4. Schiller, P. H. & Koerner, F. J. Neurophysiol. 34, 920–936 (1971).

    Article  CAS  Google Scholar 

  5. Wurtz, R. H. & Goldberg, M. E. J. Neurophysiol. 35, 575–586 (1972).

    Article  CAS  Google Scholar 

  6. Sparks, D. L. Brain Res. 156, 1–16 (1978).

    Article  ADS  CAS  Google Scholar 

  7. Dräger, U. C. & Hubel, D. H. Nature 253, 203–204 (1975).

    Article  ADS  Google Scholar 

  8. Chalupa, L. M. & Rhoades, R. W. J. Physiol., Lond. 270, 595–626 (1977).

    Article  CAS  Google Scholar 

  9. Palmer, A. R. & King, A. J. Nature 299, 248–249 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Wickelgren, B. G. Science 173, 69–72 (1971).

    Article  ADS  CAS  Google Scholar 

  11. Gordon, B. J. Neurophysiol. 36, 157–178 (1973).

    Article  CAS  Google Scholar 

  12. Dräger, U. C. & Hubel, D. H. J. Neurophysiol. 38, 690–713 (1975).

    Article  Google Scholar 

  13. Stein, B. E., Magalhães-Castro, B. & Kruger, L. J. Neurophysiol. 39, 401–419 (1976).

    Article  CAS  Google Scholar 

  14. Wise, L. Z. & Irvine, D. R. F. J. Neurophysiol. 49, 674–685 (1983).

    Article  CAS  Google Scholar 

  15. Pöppel, E. Nature 243, 231 (1973).

    Article  ADS  Google Scholar 

  16. Mays, L. E. & Sparks, D. L. J. Neurophysiol. 43, 207–231 (1980).

    Article  CAS  Google Scholar 

  17. Sparks, D. L. & Mays, L. E. J. Neurophysiol. 49, 45–63 (1983).

    Article  CAS  Google Scholar 

  18. Sparks, D. L. & Porter, J. D. J. Neurophysiol. 49, 64–74 (1983).

    Article  CAS  Google Scholar 

  19. Harris, L. R., Blakemore, C. & Donaghy, M. Nature 288, 56–59 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Knudsen, E. & Konishi, M. Science 200, 795–797 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Fuchs, A. F. & Robinson, D. A. J. appl. Physiol. 21, 1068–1070 (1966).

    Article  CAS  Google Scholar 

  22. Middlebrooks, J. C. & Pettigrew, J. D. J. Neurosci. 1, 107–120 (1081).

    Article  Google Scholar 

  23. Wise, L. Z., Irvine, D. R. F., Pettigrew, J. D. & Calford, M. B. Neurosci. Lett. S8, S88 (1982).

  24. Semple, M. N., Aitkin, L. M., Calford, M. B., Pettigrew, J. D. & Phillips, D. P. Hearing Res. 10, 203–215 (1983).

    Article  CAS  Google Scholar 

  25. Jay, M. F. & Sparks, D. L. Neurosci. Abstr. 12, 951 (1982); Invest. Ophthal. vis. Sci. Suppl. 22, 82 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jay, M., Sparks, D. Auditory receptive fields in primate superior colliculus shift with changes in eye position. Nature 309, 345–347 (1984). https://doi.org/10.1038/309345a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309345a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing