Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voltage-gated Ca2+ entry into Paramecium linked to intraciliary increase in cyclic GMP

Abstract

Inward Ca2+ currents exist in many excitable tissues and are linked to regulation of several cellular processes such as cyclic GMP formation1–4. In Paramecium, a graded Ca2+/K+ action potential regulates swimming behaviour5–7. Voltage-gated Ca2+ channels localized in the excitable ciliary membrane8,9 conduct a depolarizing influx of Ca2+ and translate changes in membrane potential into a transient Ca2+ signal which triggers ciliary reversal, that is, backward swimming5,6. A guanylate cyclase that is activated specifically by Ca2+ has already been characterized in the ciliary membrane10. By using behavioural mutants of Paramecium with reduced6,11,12 or exaggerated13,14 Ca2+ currents, we now demonstrate in an intact animal a direct link between the voltage-gated inward Ca2+ current and an elevation of cyclic GMP levels. Although the increased cyclic GMP level does not directly influence swimming behaviour, the combination of electrophysiology, biochemistry and genetics possible with Paramecium offers an opportunity of identifying the role of cyclic GMP levels in cell behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ferrendelli, J. A., Rubin, E. H. & Kinscherf, D. A. J. Neurochem. 26, 741–748 (1976).

    Article  CAS  Google Scholar 

  2. Takayanagi, I., Hisayama, T. & Kotsugai, T. Jap. J. Pharmac. 31, 831–834 (1981).

    Article  CAS  Google Scholar 

  3. El-Fakahany, E. & Richelson, E. Proc. natn. Acad. Sci. U.S.A. 77, 6897–6901 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Cohen, A. I. Curr. Topics Membranes Transp. 15, 215–229 (1981).

    Article  CAS  Google Scholar 

  5. Eckert, R. & Brehm, P. A. Rev. Biophys. Bioengng 8, 353–383 (1979).

    Article  CAS  Google Scholar 

  6. Kung, C. & Saimi, Y. A. Rev. Physiol. 44, 519–534 (1982).

    Article  CAS  Google Scholar 

  7. Naitoh, Y. in Electrical Conduction and Behaviour in ‘Simple’ Invertebrates (ed. Shelton, A. B.) 1–48 (Clarendon, Oxford, 1982).

    Google Scholar 

  8. Ogura, A. & Takahashi, K. Nature 264, 170–172 (1976).

    Article  ADS  CAS  Google Scholar 

  9. Dunlap, K. J. Physiol., Lond. 271, 119–133 (1977).

    Article  CAS  Google Scholar 

  10. Klumpp, S. & Schultz, J. E. Eur. J. Biochem. 124, 317–324 (1982).

    Article  CAS  Google Scholar 

  11. Oertel, D., Schein, S. J. & Kung, C. Nature 268, 120–124 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Kung, C., Chang, S. Y., Satow, Y., van Houten, J. & Hansma, H. Science 188, 898–904 (1975).

    ADS  CAS  PubMed  Google Scholar 

  13. Hinrichsen, R. D. & Saimi, Y. J. Physiol., Lond. 351, 397–410 (1984).

    Article  CAS  Google Scholar 

  14. Hinrichsen, R. D., Saimi, Y. & Kung, C. Genetics 108, 545–558 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Brehm, P., Eckert, R. & Tillotson, D. J. Physiol., Lond. 306, 193–203 (1980).

    Article  CAS  Google Scholar 

  16. Ling, K.-Y. & Kung, C. J. exp. Biol. 84, 73–87 (1980).

    CAS  PubMed  Google Scholar 

  17. Browning, J. L., Nelson, D. L. & Hansma, H. Nature 259, 491–494 (1976).

    Article  ADS  CAS  Google Scholar 

  18. Naitoh, Y. & Eckert, R. Z. vergl. Physiol. 8, 453–472 (1968).

    Article  Google Scholar 

  19. Satow, Y. & Kung, C. J. exp. Biol. 78, 149–161 (1979).

    CAS  Google Scholar 

  20. Klumpp, S., Kleefeld, G. & Schultz, J. E. J. biol. Chem. 258, 12455–12459 (1983).

    CAS  PubMed  Google Scholar 

  21. Hinrichsen, R. D. & Kung, C. Genet. Res. 43, 11–20 (1984).

    Article  Google Scholar 

  22. Klumpp, S., Steiner, A. L. & Schultz, J. E. Eur. J. Cell Biol. 32, 164–170 (1983).

    CAS  PubMed  Google Scholar 

  23. Rapp, P. E. & Berridge, M. J. J. theor. Biol. 66, 497–525 (1977).

    Article  CAS  Google Scholar 

  24. Berridge, M. J. Adv. Cyclic Nucleotide Prot. Phosphor. 17, 329–335 (1984).

    CAS  Google Scholar 

  25. Satow, Y. & Kung, C. J. exp. Biol. 88, 293–303 (1980).

    CAS  PubMed  Google Scholar 

  26. Van Wagtendonk, W. J. in Paramecium: A Current Survey (ed. van Wagtendonk, W. J.) 339–378 (Elsevier, Amsterdam, 1974).

    Google Scholar 

  27. Delaage, M. A., Roux, D. & Cailla, H. L. Molecular Biology and Pharmacology of Cyclic Nucleotides (eds Falco, G. & Paoletti, R.) 155–170 (Elsevier, Amsterdam, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultz, J., Pohl, T. & Klumpp, S. Voltage-gated Ca2+ entry into Paramecium linked to intraciliary increase in cyclic GMP. Nature 322, 271–273 (1986). https://doi.org/10.1038/322271a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322271a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing