Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transcriptional interference and termination between duplicated α-globin gene constructs suggests a novel mechanism for gene regulation

Abstract

The interesting possibility that transcriptional interference can occur between eukaryotic genes was raised by studies on the avian leukosis retrovirus (ALV)1 which showed that deletion of the promoter in the 5′ long terminal repeat (LTR) activates the 3′ LTR promoter, linked to a downstream gene. These observations provide a molecular explanation for the fact that insertional oncogenesis by the ALV promoter is invariably associated with either a rearranged or deleted 5′ LTR sequence2‐4. This letter extends these findings to chromosomal RNA polymerase II genes by studying transcriptional interference between duplicated α-globin gene constructions. I demonstrate that transcriptional interference causes substantial inhibition of the downstream α gene by transcription of the upstream α gene. Furthermore, this inhibition is alleviated by placing transcriptional termination signals between the two α genes. Because many eukaryotic genes may be arranged in tandem on a chromosome, these observations suggest that transcriptional termination is an important mechanism for preventing interference between adjacent genes. The selective use of termination signals may provide a novel way of regulating the activity of eukaryotic genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cullen, B. R., Lemedico, P. T. & Ju, G. Nature 307, 241–245 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Neel, B. G., Hayward, W. S., Robinson, H. L., Fang, J. & Astrin, S. M. Cell 23, 323–334 (1981).

    Article  CAS  Google Scholar 

  3. Fung, Y. T., Fadly, A. M., Crittenden, L. B. & Kung, H. J. Proc. natn. Acad. Sci. U.S.A. 78, 3418–3422 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Varmus, H. E. & Swanstrom, R. in RNA Tumor Viruses 2nd edn, 369–512 (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  5. Banerji, J., Rusconi, S. & Schaffner, W. Cell 27, 299–308 (1981).

    Article  CAS  Google Scholar 

  6. Mellon, P., Parker, V., Gluzman, Y. & Maniatis, T. Cell 27, 279–288 (1981).

    Article  CAS  Google Scholar 

  7. Benoist, C. & Chambon, P. Nature 290, 304 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Fromm, M. & Berg, P. J. molec. appl. Genet. 111, 457 (1982).

    Google Scholar 

  9. Ghosh, P. K., Reddy, V. B., Swinscoe, J., Lebowitz, P. & Weissman, S. M. J. molec. Biol. 126, 813 (1978).

    Article  CAS  Google Scholar 

  10. Grosveld, G. C., de Boer, E., Shewmaker, C. K. & Flavell, R. A. Nature 295, 120–126 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Proudfoot, N. J., Shander, M. H. M., Manley, J. L., Gefter, M. L. & Maniatis, T. Science 209, 1329–1336 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Weaver, R. F. & Weissmann, C. Nucleic Acids Res. 7, 1175–1193 (1979).

    Article  CAS  Google Scholar 

  13. Johnson, M. R., Norman, C., Reeve, M. A., Scully, J. & Proudfoot, N. J. Molec. Cell Biol. (submitted).

  14. Birchmeier, C., Schumperli, D., Sconzo, G. & Birnstiel, M. L. Proc. natn. Acad. Sci. U.S.A. 81, 1057–1061 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Citron, B., Falck-Pedersen, E., Salditt-Georgieff, M. & Darnell, J. E. Jr Nucleic Acids Res. 12, 8723–8732 (1984).

    Article  CAS  Google Scholar 

  16. Falck-Pedersen, E., Logan, J., Shenk, T. & Darnell, J. E. Jr Cell 40, 897–905 (1985).

    Article  CAS  Google Scholar 

  17. Southern, P. J. & Berg, P. J. molec. appl. Genet. 1, 327–341 (1982).

    CAS  Google Scholar 

  18. Bender, W. et al. Science 221, 23–29 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Toole, J. J. et al. Nature 312, 342–347 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Grummt, I., Maier, U., Ohrlein, A., Hassouna, N. & Bachellerie, J.-P. Cell 43, 801–810 (1985).

    Article  CAS  Google Scholar 

  21. Rosenberg, M. & Court, D. A. Rev. Genet. 13, 319–353 (1979).

    Article  CAS  Google Scholar 

  22. Vieira, J. & Messing, J. Gene 19, 259–272 (1982).

    Article  CAS  Google Scholar 

  23. Johnson, M. R. thesis, Univ. Oxford (1984).

  24. Proudfoot, N. J., Rutherford, T. R. & Partington, G. A. EMBO J. 3, 1533–1540 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proudfoot, N. Transcriptional interference and termination between duplicated α-globin gene constructs suggests a novel mechanism for gene regulation. Nature 322, 562–565 (1986). https://doi.org/10.1038/322562a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322562a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing