Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The accessible surface area and stability of oligomeric proteins

Abstract

Protein structures are stabilized by hydrophobic and van der Waals forces, and by hydrogen bonds. The relation between these ther-modynamic quantities and the actual three-dimensional structure of proteins can not be calculated precisely. However, certain empirical relations have been discovered. Hydrophobic energy is gained by the reduction of surface in contact with water1. For monomeric proteins, the area of the surface accessible to solvent, and of that buried in the interior, is a simple function of molecular weight. Proteins with different shapes and secondary structures, but of the same molecular weight, have the same accessible surface area2–5. It has been argued that there is no similar relationship for large oligomeric proteins6. In this paper we show that the surface areas of oligomeric proteins, and the areas of the surface buried within them, are directly related to relative molecular mass. Although oligomers of the same molecular weight bury the same amounts of surface, the proportions buried within and between subunits vary. This has important implications for the role of subunit interfaces in the stability and activity of oligomeric proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. 1. Kauzmann, W. Adv. Protein Chem. 14, 1–63 (1959). 2. Chothia, C. Nature 254, 304–308 (1975). 3. Janin, J. /. molec. BioL 105, 13–14 (1976). 4. Teller, D. Nature 260, 729–731 (1976). 5. Miller, S., Janin, J., Lesk, A. M. & Chothia, C. J. molec. Bio/. 196, 641–656 (1987). 6. Sprang, S., Yang, D. & Fletterick, R. J. Nature 280, 333–335 (1979). 7. Bernstein, F. C. et al. J. molec. Biol. 112, 535–542 (1977). 8. Lee, B. & Richards, F. M. / molec. Biol. 55, 379–400 (1971). 9. Shrake, A. & Rupley, J. A. /. molec. Biol. 79, 351–371 (1973). 10. Jaenicke, R. Angew. Chem. 23, 395–413 (1984). 11. Privalov, P. L. Adv. Protein Chem. 33, 167–241 (1979). 12. Creighton, T. Proteins (Freeman, New York, 1983). 13. Baldwin, R. L. Proc. natn. Acad. Sci. U.S.A. 83, 8069–8072 (1986). 14. Blundell, T. L., Pitts, J. E., Tickle, I. J., Wood, S. P. & Wu, C. W. Proc. natn. Acad. Sci. U.S.A. 78, 4175–4179 (1981). 15. Mitsui, Y., Satow, Y., Watanabe, Y. & litaka, Y. /. molec. Biol. 131, 697–724 (1979). 16. Finzel, B. C., Weber, P. C., Hardman, K. D. & Salemme, F. R. /. molec. Biol. 186, 627–643 (1985). 17. Tainer, J. A., Getzoff, E. D., Beem, K. M., Richardson, D. C. & Richardson, J. S. /. molec. Biol. 160, 181–217 (1982). 18. Marquart, M., Deisenhofer, J. & Huber, R. /. molec. Biol. 141, 369–391 (1980). 19. Banner, D. W. et al. Nature 255, 609–614 (1975). 20. Ekland, H. et al. J. molec. Biol. 146, 561–587 (1981). 21. Ford, G. C., Eichele, G. & Jansonius, J. N. Proc. natn. Acad. Sci. U.S.A. 77,2559–2563 (1980). 22. Remington, S., Wiegand, G. & Huber, R. /. molec. Biol. 158, 111–152 (1982). 23. Sprang, S. & Fletterick, R. J. J. molec. Biol. 131, 523–551 (1979). 24. Terwilliger, T. C. & Eisenberg, D. /. biol Chem. 257, 6016–6022 (1982). 25. Blake, C. C. F., Geisow, M. J., Oatley, S. J., Rerat, B. & Rerat, C. /. molec. Biol. 121, 339–356 (1978). 26. Fermi, G., Perutz, M. F., Shaanan, B. & Fourme, R. /. molec. Biol. 175, 159–174 (1984). 27. Epp, O., Ladenstein, R. & Wendel, A. Eur. J. Biochem. 133, 51–69 (1983). 28. Reeke, G. N., Becker, J. W. & Edelman, G. M. J. biol. Chem. 250, 1525–1547 (1975). 29. Evans, P. R. & Hudson, P. J. Nature 279, 500–504 (1979). 30. White, J. L. et al. J. molec. Biol. 102, 759–779 (1976). 31. Biesecker, G., Harris, J. I., Thierry, J.–C. & Wonacott, A. J. Nature 266, 328–333 (1977). 32. Murthy, M. R. N., Reid, T. J., Sicignano, A., Tanaka, N. & Rossmann, M. G. / molec. Biol. 152, 465–499 (1981). 33. Blundell, T. L., Dodson, G. G., Hodgkin, D. C. & Mercola, D. Adv. Protein Chem. 26, 279–402 (1972). 34. Schirmer, T., Bode, W., Huber, R., Sidler, W. & Zuber, H. / molec. Biol. 184,251–211 (1985). 35. Stenkamp, R. E., Sicker, L. C. & Jensen, L. A. Acta crystallogr. B39, 697–703 (1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, S., Lesk, A., Janin, J. et al. The accessible surface area and stability of oligomeric proteins. Nature 328, 834–836 (1987). https://doi.org/10.1038/328834a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/328834a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing