Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Importance of DNA stiffness in protein–DNA binding specificity

Abstract

From the first high-resolution structure of a repressor bound specifically to its DNA recognition sequence1 it has been shown that the phage 434 repressor protein binds as a dimer to the helix. Tight, local interactions are made at the ends of the binding site, causing the central four base pairs (bp) to become bent and overtwisted. The centre of the operator is not in contact with protein but repressor binding affinity can be reduced at least 50-fold in response to a sequence change there2. This observation might be explained should the structure of the intervening DNA segment vary with its sequence, or if DNA at the centre of the operator resists the torsional and bending deformation necessary for complex formation in a sequence dependent fashion. We have considered the second hypothesis by demonstrating that DNA stiffness is sequence dependent. A method is formulated for calculating the stiffness of any particular DNA sequence, and we show that this predicted relationship between sequence and stiffness can explain the repressor binding data in a quantitative manner. We propose that the elastic properties of DNA may be of general importance to an understanding of protein–DNA binding specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anderson, J. E., Ptashne, M. & Harrison, S. C. Nature 326, 846–852 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Koudelka, G. B., Harrison, S. B. & Ptashne, M. Nature 326, 886–888 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Peterlin, A. Nature 171, 259–262 (1953).

    Article  ADS  CAS  Google Scholar 

  4. Landau, L. & Lifshitz, E. M. in Statistical Physics (Addison-Wesley, Reading, 1958).

    MATH  Google Scholar 

  5. Barkley, M. D. & Zimm, B. H. J. chem. Phys. 70, 2991–3007 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Millar, D. P., Robbins, R. J. & Zuwail, A. H. J. chem. Phys. 76, 2080–2094 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Hogan, M., LeGrange, J. & Austin, B. Nature 304, 752–754 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Thomas, T. J. & Bloomfield, V. A. Nucleic Acids Res. 11, 1919–1931 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, H. H., Rau, D. C. & Charney, E. J. biomolec. struct. Dynam. 2, 709–719 (1985).

    Article  CAS  Google Scholar 

  10. Berkoff, B., Hogan, M., LeGrange, J. & Austin, R. Biopolymers 25, 307–316 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Wu, H. M. & Crothers, D. M. Nature 308, 509–513 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Fujimoto, B. S., Shibata, J. H., Schurr, R. L. & Schurr, J. M. Biopolymers 24, 1009–1022 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Fratini, A. V., Kopka, M. L., Drew, H. R. & Dickerson, R. E. J. biol. Chem. 257, 14686–14707 (1982).

    CAS  PubMed  Google Scholar 

  14. Ulanovsky, L., Bodner, M., Trifonov, E. N. & Choder, M. Proc. natn. Acad. Sci. U.S.A 83, 862–866 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Hagermann, P. Nature 321, 449–450 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogan, M., Austin, R. Importance of DNA stiffness in protein–DNA binding specificity. Nature 329, 263–266 (1987). https://doi.org/10.1038/329263a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329263a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing