Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Characterization of ribosomal frameshifting in HIV-1 gag-pol expression

Abstract

Based on precedents from other retro viruses1, the precursor of the human immunodeficiency virus (HIV-1) reverse transcriptase is predicted to be a polyprotein with a relative molecular mass (Mr) of 160,000 (160K) encoded by both the viral pol gene and the upstream gag gene. These two genes lie in different translational reading frames, with the 3′ end of gag overlapping the 5′ end of pol by 205 or 241 nucleotides2–4. Thus, production of the gag-pol fusion protein would require either messenger RNA processing or translational frameshifting. The latter mechanism has been shown in the synthesis of the gag-pol proteins of two other retroviruses, Rous sarcoma virus (RSV)5 and mouse mammary tumour virus (MMTV)6–7. Here we report that translation of HIV-1 RNA synthesized in vitro by SP6 RNA polymerase yields significant amounts of a gag-pol fusion protein, indicating that efficient ribosomal frameshifting also occurs within the HIV-1 gag-pol overlap region. Site-directed mutagenesis and amino-acid sequencing localized the site of frameshifting to a UUA leucine codon near the 5′ end of the overlap.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weiss, R., Teich, N., Varmus, H. & Coffin, J. Molecular Biology of Tumor Viruses, RNA Tumor Viruses (Cold Spring Harbor, 1985).

    Google Scholar 

  2. Sanchez-Pescador, R. et al. Science 227, 484–492 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Wain-Hobson, S., Sonigo, P., Danos, O., Cole, S. & Alizon, M. Cell 40, 9–17 (1987).

    Article  Google Scholar 

  4. Ratner, L. et al. Nature 313, 277–284 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Jacks, T. & Varmus, H. E. Science 230, 1237–1242 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Jacks, T., Townsley, K., Varmus, H. E. & Majors, J. Proc. natn. Acad. Sci. U.S.A. 84, 4298–4302 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Moore, R., Dixon, M., Smith, R., Peters, G. & Dickson, C. J. Virol. 61, 480–490 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yoshinaka, Y., Katoh, I., Copeland, T. D. & Oroszlan, S. Proc. natn. Acad. Sci. U.S.A. 82, 1618–1622 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Yoshinaka, Y., Katoh, I., Copeland, T. D. & Oroszlan, S. J. Virol. 55, 870–873 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwartz, D. E., Tizard, R. & Gilbert, W. Cell 32, 853–869 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Muesing, M. A. et al. Nature 313, 450–458 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Melton, D. A. et al. Nucleic Acids Res. 12, 7035–7056 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guyader, M. et al. Nature 326, 662–669 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Franchini, G. et al. Nature 328, 539–543 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Chakrabarti, L. et al. Nature 328, 543–547 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Chen, I. S. Y. Cell 47, 1–2 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Steimer, K. S. et al. Virology 150, 283–290 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Steimer, K. S. et al. J. Virol 58, 9–16 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Uhlen, M. et al. J. biol. Chem. 259, 1695–1702 (1984).

    CAS  PubMed  Google Scholar 

  20. Palmiter, R. D., Gagnon, J., Ericsson, L. H. & Walsh, K. A. J. biol. Chem. 252, 6386–6393 (1977).

    CAS  PubMed  Google Scholar 

  21. Tsungsawa, S., Stewart, J. W. & Sherman, F. J. biol. Chem. 260, 5382–5391 (1985).

    Google Scholar 

  22. Uhlen, M. et al. Gene 23, 369–378 (1983).

    Article  CAS  PubMed  Google Scholar 

  23. Zoller, M. & Smith, M. Nucleic Acids Res. 10, 6487–6500 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacks, T., Power, M., Masiarz, F. et al. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331, 280–283 (1988). https://doi.org/10.1038/331280a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331280a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing