Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of neuronal fate by the Drosophila segmentation gene even-skipped

Abstract

The central nervous system (CNS) contains a remarkable diversity of cell types. The molecular basis for generating this neuronal diversity is poorly understood. Much is known, however, about the regulatory genes which control segmentation and segment identity during early Drosophila embryogenesis1,2. Interestingly, most of the segmentation and homoeotic genes in Drosophila, as well as many of their vertebrate homologues, are expressed during the development of the nervous system (for example, ref. 3). Are these genes involved in specifying the identity of individual neurons during neurogenesis, just as they specify the identity of cells during segmentation? We previously described the CNS expression of the segmentation gene fushi tarazu (ftz) and showed that ftz CNS expression is involved in the determination of an identified neuron3. Here we show that another segmentation gene, even-skipped (eve), is expressed in a different but overlapping subset of neurons. Temperature-sensitive inactivation of the eve protein during neurogenesis alters the fate of two of these neurons. Our results indicate that the nuclear protein products of the eve and ftz segmentation genes are components of the mechanism controlling cell fate during neuronal development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nusslein-Volhard, C. & Wieshaus, E. Nature 287, 795–801 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Lewis, E. B. Nature 276, 565–570 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Doe, C. Q., Hiromi, Y., Gehring, W. J. & Goodman, C. S. Science 239, 170–175 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Bate, C. M. J. Embryol. exp. Morph. 35, 107–123 (1976).

    CAS  PubMed  Google Scholar 

  5. Doe, C. Q. & Goodman, C. S. Devl Biol. 111, 193–205 (1985).

    Article  CAS  Google Scholar 

  6. Doe, C. Q. & Goodman, C. S. Devl Biol. 111, 206–219 (1985).

    Article  CAS  Google Scholar 

  7. Hartenstein, V. & Campos-Ortega, J. A. Wilhelm Roux Arch. dev. Biol. 193, 308–325 (1984).

    Article  Google Scholar 

  8. Goodman, C. S. & Spitzer, N. C. Nature 280, 208–214 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Goodman, C. S., Raper, J. A., Ho, R. K. & Chang, S. in Developmental Order and Regulation (eds Subtelny, S. & Green, P. B.) 275–316 (Liss, New York, 1982).

    Google Scholar 

  10. Raper, J. A., Bastiani, M. J. & Goodman, C. S. J. Neurosci. 3, 20–30 (1983).

    Article  CAS  Google Scholar 

  11. Taghert, P. H. & Goodman, C. S. J. Neurosci. 4, 989–1000 (1984).

    Article  CAS  Google Scholar 

  12. Kuwada, J. Y. & Goodman, C. S. Devl Biol. 110, 114–126 (1985).

    Article  CAS  Google Scholar 

  13. Lehmann, R., Jiminez, F., Dietrich, U. & Campos-Ortega, J. A. Wilhelm Roux, Arch. dev. Biol. 192, 62–74 (1983).

    Article  Google Scholar 

  14. Campos-Ortega, J. A. Trends Neurosci. 8, 245–250 (1985).

    Article  Google Scholar 

  15. Hiromi, Y., Kuroiwa, A. & Gehring, W. J. Cell 43, 603–613 (1985).

    Article  CAS  Google Scholar 

  16. Carroll, S. B. & Scott, M. P. Cell 43, 47–57 (1985).

    Article  CAS  Google Scholar 

  17. DiNardo, S., Kuner, J. M., Theis, J. & O'Farrell, P. H. Cell 43, 59–69 (1985).

    Article  CAS  Google Scholar 

  18. Knipple, D. C., Seifert, E., Rosenberg, U. B., Preiss, A. & Jackle, H. Nature 317, 40–44 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Bopp, D., Burri, M., Baumgartner, S., Frigerio, G. Noll, M. Cell 47, 1033–1040 (1986).

    Article  CAS  Google Scholar 

  20. MacDonald, P. M., Ingham, P. & Struhl, G. Cell 47, 721–734 (1986).

    Article  CAS  Google Scholar 

  21. Frasch, M., Hoey, T., Rushlow, C., Doyle, H. & Levine, M. EMBO J. 6, 749–759 (1987).

    Article  CAS  Google Scholar 

  22. Tautz, D. et al. Nature 327, 383–389 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Baker, N. E. EMBO J. 6, 1765–1773 (1987).

    Article  CAS  Google Scholar 

  24. Thomas, J. B., Bastiani, M. J., Bate, M. & Goodman, C. S. Nature 310, 203–207 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Goodman, C. S. et al. Science 225, 1271–1279 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Patel, N. H., Snow, P. M. & Goodman, C. S. Cell 48, 975–988 (1987).

    Article  CAS  Google Scholar 

  27. Carroll, S. B. & Scott, M. P. Cell 45, 113–126 (1986).

    Article  CAS  Google Scholar 

  28. Nusslein-Volhard, C., Kluding, H. & Jurgens, G. Cold Spring Harb. Symp. quant. Biol. 50, 145–154 (1985).

    Article  CAS  Google Scholar 

  29. Jan, L. Y. & Jan, Y. N. Proc. natn. Acad. Sci. U.S.A. 79, 2700–2704 (1982).

    Article  ADS  CAS  Google Scholar 

  30. Bastiani, M. J., Doe, C. Q., Helfand, S. L. & Goodman, C. S. Trends Neurosci. 8, 257–266 (1985).

    Article  Google Scholar 

  31. Awgulewitsch, A., Utset, M. F., Hart, C. P., McGinnis, W. & Ruddle, F. H. Nature 320, 328–335 (1986).

    Article  ADS  CAS  Google Scholar 

  32. Simeone, A. et al. Nature 320, 763–765 (1986).

    Article  ADS  CAS  Google Scholar 

  33. Carrasco, A. E. & Malacinski, G. M. Devl Biol. 121, 69–81 (1987).

    Article  CAS  Google Scholar 

  34. Joyner, A. L. & Martin, G. R. Genes Dev. 1, 29–38 (1987).

    Article  CAS  Google Scholar 

  35. Odenwald, W. F. et al. Genes Dev. 1, 482–496 (1987).

    Article  CAS  Google Scholar 

  36. Krumlauf, R., Holland, P. W. H., McVey, J. H. & Hogan, B. L. M. Development 99, 603–617 (1987).

    CAS  PubMed  Google Scholar 

  37. Fainsod, A., Awgulewitsch, A. & Ruddle, F. H. Devl Biol. 124, 125–133 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doe, C., Smouse, D. & Goodman, C. Control of neuronal fate by the Drosophila segmentation gene even-skipped. Nature 333, 376–378 (1988). https://doi.org/10.1038/333376a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333376a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing