Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Chemokines and leukocyte traffic

Abstract

Over the past ten years, numerous chemokines have been identified as attractants of different types of blood leukocytes to sites of infection and inflammation. They are produced locally in the tissues and act on leukocytes through selective receptors. Chemokines are now known to also function as regulatory molecules in leukocyte maturation, traffic and homing of lymphocytes, and the development of lymphoid tissues.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shape change of human neutrophil leukocytes.
Figure 2: Main chemokine receptors expressed on human leukocytes.

Similar content being viewed by others

References

  1. Metchnikoff, E. L'immunité dans les Maladies Infectieuses(Masson & Cie, Paris, (1901).

    Google Scholar 

  2. Baggiolini, M., Dewald, B. & Moser, B. Interleukin-8 and related chemotactic cytokines — CXC and CC chemokines. Adv. Immunol. 55, 97–179 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Baggiolini, M., Walz, A. & Kunkel, S. L. Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J. Clin. Invest. 84, 1045–1049 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rajarathnam, K., Clark-Lewis, I. & Sykes, B. D. 1H NMR solution structure of an active monomeric interleukin-8. Biochemistry 34, 12983& ndash;12990 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Kennedy, J.et al. Molecular cloning and functional characterization of human lymphotactin. J.Immunol. 155, 203–209 (1995).

    CAS  PubMed  Google Scholar 

  6. Bazan, J. F.et al. Anew class of membrane-bound chemokine with a CX3C motif. Nature 385, 640–644 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Pan, Y.et al. Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 387, 611–617 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Springer, T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301–314 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Baggiolini, M., Dewald, B. & Moser, B. Human chemokines: an update. Annu. Rev. Immunol. 15, 675–705 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Furie, M. B. & Randolph, G. J. Chemokines and tissue injury. Am. J. Pathol. 146, 1287–1301 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Murphy, P. M. Chemokine receptors: structure, function and rol e in microbial pathogenesis. Cytokine Growth Fact. Rev. 7, 47–64 (1996).

    Article  CAS  Google Scholar 

  12. Clark-Lewis, I.et al. Structure-activity relationships of chemokines. J. Leukocyte Biol. 57, 703–711 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, Y. J., Rutledge, B. J. & Rollins, B. J. Structure/activity analysis of human monocyte chemoattractant protein-1 (MCP-1) by mutagenesis. Identification of a mutated protein that inhibits MCP-1-mediated monocyte chemotaxis. J. Biol. Chem. 269, 15918–15924 (1994).

    CAS  PubMed  Google Scholar 

  14. Simmons, G.et al. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 276, 276–279 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Masure, S., Paemen, L., Proost, P., Van Damme, J. & Opdenakker, G. Expression of a human mutant monocyte chemotactic protein 3 in Pichia pastoris and characterization as an MCP-3 receptor antagonist. J. Interferon Cytokine Res. 15, 955–963 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Crump, M. P.et al. Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J. 16, 6996–7007 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heath, H.et al. Chemokine receptor usage by human eosinophils — the importance of CCR3 demonstrated using an antagonistic monoclonal antibody. J. Clin. Invest. 99, 178–184 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D'Souza, M. P. & Harden, V. A. Chemokines and HIV-1 second receptors — confluence of two fields generates optimism in AIDS research. Nature Med. 2, 1293–1300 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Cocchi, F.et al. Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science 270, 1811–1815 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Oberlin, E.et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382, 833–835 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Bleul, C. C.et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382, 829–833 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Arenzana-Seisdedos, F.et al. HIV blocked by chemokine antagonist. Na ture 383, 400 (1996).

    ADS  CAS  Google Scholar 

  23. Baggiolini, M. & Moser, B. Blocking chemokine receptors. J. Exp. Med. 186, 1189–1191 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Strieter, R. M.et al. “The good, the bad, and the ugly”: the role of chemokines in models of human disease. J. Immunol. 156, 3583–3586 (1996).

    CAS  PubMed  Google Scholar 

  25. Sekido, N.et al. Prevention of lung reperfusion injury in rabbits by a monoclonal antibody against interleukin-8. Nature 365, 654–657 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Nishimura, A.et al. Attenuation of monosodium urate crystal-induced arthritis in rabbits by a neutralizing antibody against interleukin-8. J. Leukocyte Biol. 62, 444–449 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Feng, L., Xia, Y., Yoshimura, T. & Wilson, C. B. Modulation of neutrophil influx in glomerulonephritis in the rat with anti-macrophage inflammatory protein-2 (MIP-2) antibody. J. Clin. Invest. 95, 1009–1017 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rand, M. L., Warren, J. S., Mans our, M. K., Newman, W. & Ringler, D. J. Inhibition of T cell recruitment and cutaneous delayed-type hypersensitivity-induced inflammation with antibodies to monocyte chemoattractant protein-1. Am. J. Pathol. 148, 855–864 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lukacs, N. W.et al. Differential recruitment of leukocyte populations and alteration of airway hyperreactivity by C-C family chemokines in allergic airway inflammation. J. Immunol. 158, 4398–4404 (1997).

    CAS  PubMed  Google Scholar 

  30. Gong, J. H., Ratkay, L. G., Waterfield, J. D. & Clark-Lewis, I. An antagonist of monocyte chemoattractant protein 1 (MCP-1) inhibits arthritis in the MRL-lpr mouse model. J. Exp. Med. 186, 131–137 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Plater-Zyberk, C., Hoogewerf, A. J., Proudfoot, A. E. I., Power, C. A. & Wells, T. N. C. Effect of a CC chemokine receptor antagonist on collagen induced arthritis in DBA/1 mice. Immunol. Lett. 57, 117–120 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Baggiolini, M. & Dahinden, C. A. CC chemokines in allergic inflammation. Immunol. Today 15, 127–133 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Uguccioni, M.et al. High expression of the chemokine receptor CCR3 in human blood basophils — role in activation by eotaxin, MCP-4, and other chemokines. J. Clin. Invest. 100, 1137–1143 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamada, H.et al. Eotaxin is a potent chemotaxin for human basophils. Biochem. Biophys. Res. Commun. 231, 365–368 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Sallusto, F., Mackay, C. R. & Lanzavecchia, A. Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 277, 2005–2007 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Gerber, B. O.et al. Functional expression of the eotaxin receptor CCR3 in T lymphocytes co-localizing with eosinophils. Curr. Biol. 7, 836–843 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Forssmann, U.et al. Eotaxin-2, a novel CC chemokine that is selective for the chemokine receptor CCR3, and acts like eotaxin on human eosinophil and basophil leukocytes. J. Exp. Med. 185, 2171–2176 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rothenberg, M. E., MacLean, J. A., Pearlman, E., Luster, A. D. & Leder, P. Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J. Exp. Med. 185, 785–790 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Loetscher, P., Seitz, M., Baggiolini, M. & Moser, B. Interleukin-2 regulates CC chemokine receptor expression and chemotactic responsiveness in T lymphocytes. J. Exp. Med. 184, 569–577 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Bleul, C. C., Wu, L. J., Hoxie, J. A., Springer, T. A. & Mackay, C. R. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc. Natl Acad. Sci. USA 94, 1925–1930 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moore, J. P. & Koup, R. A. Chemoattractants attract HIV researchers. J. Exp. Med. 184, 311–313 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Loetscher, M.et al. Chemokine receptor specific for IP10 and Mig: structure, function, and expression in activated T-lymphocytes. J. Exp. Med. 184, 963–969 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Abbas, A. K., Murphy, K. M. & Sher, A. F unctional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Loetscher, P.et al. CCR5 is characteristic for Th1 lymphocytes. Nature 391, 344–345 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Bonecchi, R.et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and TH2s. J. Exp. Med. 187, 129–134 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sallusto, F., Lenig, D., Mackay, C. R. & Lanzavecchia, A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and T helper 2 lymphocytes. J. Exp. Med.(in the press).

  47. Butcher, E. C. & Picker, L. J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Yoshie, O., Imai, T. & Nomiyama, H. Novel lymphocyte-specific CC chemokines and their receptors. J.Leukocyte Biol. 62, 634–644 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Adema, G. J.et al. Adendritic-cell-derived C-C chemokine that preferential ly attracts naive T cells. Nature 387, 713–717 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Vicari, A. P.et al. TECK: a novel CC chemokine specifically expressed by thymic dendritic cells and potentially involved in T cell development. Immunity 7, 291–301 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Förster, R.et al. Aputative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996).

    Article  PubMed  Google Scholar 

  52. Legler, D. F.et al. BCA-1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J. Exp. Med. 187, 655–660 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gunn, M. D.et al. AB-cell-homing chemokine made in lymphoid follicles activated Burkitt's lymphoma receptor-1. Nature 391, 799–803 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Nagasawa, T., Kikutani, H. & Kishimoto, T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc. Natl Acad. Sci. USA 91, 2305–2309 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bleul, C. C., Fuhlbrigge, R. C., Casasnovas, J. M., Aiuti, A. & Springer, T. A. Ahighly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med. 184, 1101–1109 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Nagasawa, T.et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. D'Apuzzo, M.et al. The chemokine SDF-1, stromal cell-derived factor 1, attracts early stage B cell precursors via the chemokine receptor CXCR4. Eur. J. Immunol. 27, 1788–1793 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Aiuti, A., Webb, I. J., Bleul, C., Springer, T. & Gutierrez-Ramos, J. C. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J. Exp. Med. 185, 111–120 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hadley, T. J. & Peiper, S. C. From malaria to chemokine receptor: the emerging physiologic role of the Duffy blood group antigen. Blood 89, 3077–3091 (1997).

    CAS  PubMed  Google Scholar 

  61. Arenberg, D. A.et al. The role of CXC chemokines in the regulation of angiogenesis in non-small cell lung cancer. J. Leukocyte Biol. 62, 554–562 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Cook, D. N. The role of MIP-1α in inflammation and hematopoiesis. J. Leukocyte Biol. 59, 61–66 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Verfaillie, C. M. Chemokines as inhibitors of hematopoietic progenitors. J. Lab. Clin. Med. 127, 148–150 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Tilton, B., Andjelkovic, M., Didichenko, S. A., Hemmings, B. A. & Thelen, M. G-protein coupled receptors and Fcg-receptors mediate activation of Akt/protein kinase B in human phagocytes. J. Biol. Chem. 272, 28096–28101 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Laudanna, C., Campbell, J. J. & Bu tcher, E. C. Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science 271, 981–983 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Bokoch, G. M. Chemoattractant signaling and leukocyte activation. Blood 86, 1649–1660 (1995).

    CAS  PubMed  Google Scholar 

  67. Horuk, R.et al. Expression of chemokine receptors by subsets of neurons in the central nervous system. J. Immunol. 158, 2882–2890 (1997).

    CAS  PubMed  Google Scholar 

  68. Roos, R. S.et al. Identification of CCR8, the receptor for the human CC chemokine I-309. J. Biol. Chem. 272, 17251–17254 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Tiffany, H. L.et al. Identification of CCR8: a human monocyte and thymus receptor for the CC chemokine I-309. J. Exp. Med. 186, 165–170 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank B. Dewald for discussion and for comments on the manuscript, M. Wymann for the electron micrograph shown in Fig. 1, and the Hochshulstiftung of the University of Bern and the Swiss NSF for their support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baggiolini, M. Chemokines and leukocyte traffic. Nature 392, 565–568 (1998). https://doi.org/10.1038/33340

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/33340

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing