Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Caenorhabditis elegans lin-12 gene encodes a transmembrane protein with overall similarity to Drosophila Notch

Abstract

The lin-12 gene seems to control certain binary decisions during Caenorhabditis elegans development, from genetic and anatomical studies of lin-12 mutants that have either elevated or reduced levels of lin-12 activity1. We report here the complete DNA sequence of lin-12:13.5 kilobases (kb) derived from genomic clones and 4.5 kb from complementary DNA clones. It is of interest that the predicted product is a putative transmembrane protein, given that many of the decisions controlled by lin-12 activity require cell-cell interactions for the correct choice of cell fate2–5. In addition, the predicted lin-12 product may be classified into several regions, based on amino acid sequence similarities to other proteins. These include extensive overall sequence similarity to the Drosophila Notch protein6,7, which also is involved in cell-cell interactions that specify cell fate6–8; a repeated motif found9 in proteins encoded by the yeast cell-cycle control genes cdc10 (Schizosaccharomyces pombe)10 and SWI6 ( Saccharomyces cerevisiae)9; and a repeated motif exemplified by epidermal growth factor, found in many mammalian proteins11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Greenwald, I. S., Sternberg, P. W. & Horvitz, H. R. Cell 34, 435–444 (1983).

    Article  CAS  Google Scholar 

  2. Sulston, J. E. & White, J. G. Devl Biol. 78, 577–597 (1980).

    Article  CAS  Google Scholar 

  3. Kimble, J. Devl Biol. 87, 286–300 (1981).

    Article  CAS  Google Scholar 

  4. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. Devl Biol. 100, 64–119 (1983).

    Article  CAS  Google Scholar 

  5. Sternberg, P. W. & Horvitz, H. R. Cell 44, 761–772 (1986).

    Article  CAS  Google Scholar 

  6. Wharton, K. A., Johansen, K. M., Xu, T. & Artavanis-Tsakonas, S. Cell 43, 567–581 (1985).

    Article  CAS  Google Scholar 

  7. Kidd, S., Kelley, M. R. & Young, M. W. Molec. cell Biol. 6, 3094–3108 (1986).

    Article  CAS  Google Scholar 

  8. Lehmann, R., Jimenez, F., Dietrich, U. & Campos-Ortega, J. A. Wilhelm Roux Arch devl Biol. 192, 62–74 (1983).

    Article  Google Scholar 

  9. Breeden, L. & Nasmyth, K. Nature 329, 651–654 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Aves, S. J., Durckacz, B. W., Carr, A. & Nurse, P. EMBO J 4, 457–463 (1985).

    Article  CAS  Google Scholar 

  11. Greenwald, I. Cell 43, 583–590 (1985).

    Article  CAS  Google Scholar 

  12. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  13. Bankier, A. T., Weston, K. M. & Barrell, B. G. Meth. Enzym. 155, 51–93 (1987).

    Article  CAS  Google Scholar 

  14. Watson, M. E. Nucleic Acids Res. 12, 5145–5164 (1984).

    Article  CAS  Google Scholar 

  15. Ullrich et al. Nature 313, 756–761 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Bender, W. Cell 43, 559–560 (1985).

    Article  CAS  Google Scholar 

  17. Akam, M. Nature 319, 447–448 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Sternberg, P. Nature (this issue).

  19. Kimble, J. & Hirsh, D. Devl Biol. 70, 396–417 (1979).

    Article  CAS  Google Scholar 

  20. Appella, E. et al. J. bio. Chem. 262, 4437–4440 (1987).

    CAS  Google Scholar 

  21. Hartley, D. A., Xu, T. & Artavanis-Tsakonas, S. EMBO J. 6, 3407–3417 (1987).

    Article  CAS  Google Scholar 

  22. Kelley, M. R., Kidd, S., Deutsch, W. A. & Young, M. W. Cell 51, 539–548 (1987).

    Article  CAS  Google Scholar 

  23. Okuda, A., Sakai, M. & Muramatsu, M. J. bio. Chem. 262, 3858–3863 (1987).

    CAS  Google Scholar 

  24. Hubbard, S. C. & Ivatt, R. J. A. Rev. Biochem. 50, 555–583 (1981).

    Article  CAS  Google Scholar 

  25. Krebs, E. G. & Beavo, J. A. A. Rev. Biochem. 48, 923–959 (1979).

    Article  CAS  Google Scholar 

  26. Birnstiel, M. L., Busslinger, M. & Strub, K. Cell 41, 349–359 (1985).

    Article  CAS  Google Scholar 

  27. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor, New York, 1982).

    Google Scholar 

  28. Lipman, D. L. & Pearson, W. R. Science 227, 1435–1441 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yochem, J., Weston, K. & Greenwald, I. The Caenorhabditis elegans lin-12 gene encodes a transmembrane protein with overall similarity to Drosophila Notch. Nature 335, 547–550 (1988). https://doi.org/10.1038/335547a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335547a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing