Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nucleosome positioning can affect the function of a cis-acting DMA elementin vivo

Abstract

POSITIONING of nucleosomes has been proposed as one mechaná-ism whereby the activity of DNA is regulated: cis-acting elements located in linker DNA might be more accessible for interaction with trans-acting protein factors than they would be if they were directly associated with histones in nucleosome core particles. The eleven base pairs constituting the autonomously replicating sequence (ARS)1 of the high-copy-number TRP1ARS1 plasmid of Saccharomyces cerevisiae are located in a linker region near the edge of a positioned nucleosome2 and form an origin of replication3. Could nucleosome positioning render the ARS accessible for interaction with the proteins necessary for its function? I have tested this hypothesis by making deletions and an insertion to move the ARS into the nucleosome DNA and then examining the effects on ARS function. There is a marked decrease in copy number when the ARS is moved into the central DNA region of the nucleosome core particle, a region known to differ in structure and stability from the peripheral segments of nucleosome DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Struhl, K., Stinchcomb, D. T., Scherer, S. & Davis, R. W. Proc. natn. Acad. Sci. U.S.A. 76, 1035–1039 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Thoma, F., Bergman, L. W. & Simpson, R. T. J. molec. Biol. 177, 715–733 (1984).

    Article  CAS  Google Scholar 

  3. Brewer, B. J. & Fangman, W. L. Cell 51, 463–471 (1987).

    Article  CAS  Google Scholar 

  4. Campbell, J. L. A. Rev. Biochem. 55, 733–771 (1986).

    Article  CAS  Google Scholar 

  5. Campbell, J. L. Trends Biochem. Sci. 13, 212–217 (1988).

    Article  CAS  Google Scholar 

  6. Umek, R. M., Linskens, M. H. K., Kowalski, D. & Huberman, J. L. Biochem. biophys. Acta 1007, 1–14 (1989).

    CAS  PubMed  Google Scholar 

  7. Srienc, F., Bailey, J. E. & Campbell, J. L. Molec. cell. Biol. 5, 1676–1684 (1985).

    Article  CAS  Google Scholar 

  8. Snyder, M., Buchanan, A. R. & Davis, R. W. Nature 324, 87–89 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Celniker, S. E., Sweder, K. S., Srienc, F., Bailey, J. E. & Campbell, J. L. Molec. cell. Biol. 4, 2455–2466 (1984).

    Article  CAS  Google Scholar 

  10. Jayram, M., Sutton, A. & Broach, J. R. Molec. cell. Biol. 5, 2466–2475 (1985).

    Article  Google Scholar 

  11. Hill, A. & Bloom, K. Molec. cell. Biol. 7, 2397–2405 (1987).

    Article  CAS  Google Scholar 

  12. Wilson, K. L. & Herskowitz, I. Proc. natn. Acad. Sci. U.S.A. 83, 2536–2540 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Weischet, W. D., Tatchell, K., van Holde, K. E. & Klump, H. Nucleic Acids Res. 5, 138–160 (1978).

    Article  Google Scholar 

  14. Simpson, R. T. J. biol. Chem. 254, 10123–10127 (1979).

    CAS  PubMed  Google Scholar 

  15. Lee, K., Baxter, H. J., Guillemette, J. G., Lawford, H. G. & Lewis, P. N. Can. J. Biochem. 60, 379–388 (1982).

    Article  CAS  Google Scholar 

  16. Morse, R. H., Pederson, D. S., Dean, A. & Simpson, R. T. Nucleic Acids Res. 15, 10311–10330 (1987).

    Article  CAS  Google Scholar 

  17. Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D. & Klug, A. Nature 311, 532–537 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Rhodes, D. EMBO J. 4, 3473–3482 (1985).

    Article  CAS  Google Scholar 

  19. Perlmann, T. & Wrange, O. EMBO J. 7, 3073–3079 (1988).

    Article  CAS  Google Scholar 

  20. Richard-Foy, H. & Hager, G. L. EMBO J. 6, 2321–2328 (1987).

    Article  CAS  Google Scholar 

  21. Almer, A., Rudolph, H., Hinnen, A. & Horz, W. EMBO J. 5, 2689–2696 (1986).

    Article  CAS  Google Scholar 

  22. Church, G. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 81, 1991–1995 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simpson, R. Nucleosome positioning can affect the function of a cis-acting DMA elementin vivo. Nature 343, 387–389 (1990). https://doi.org/10.1038/343387a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/343387a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing