Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Proximity to the promoter inhibits recognition of cauliflower mosaic virus polyadenylation signal

Abstract

THE replication of retroviruses and pararetroviruses (such as caulimo- and hepadnaviruses)1 involves the production of terminally redundant genomic-length RNA (Fig. 1). The sequence repeated at both ends of the RNA (the R region) contains a polyadenylation signal, and for production of full-length RNA the version of this at the 5′ end of the template must be bypassed by RNA polymerase, but the version at the 3′ end must be recognized2–5. This implies that the position of the polyadenylation signal determines its efficiency, and we report here experiments aimed at investigating the basis of this phenomenon. Our results with cauliflower mosaic virus6 suggest that proximity to the transcription initiation site inhibits messenger RNA 3′-end processing directed by polyadenylation signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Temin, H. M. Nature 339, 254–255 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Stoltzfus, C. M. Adv. Virus Res. 35, 1–38 (1988).

    Article  CAS  Google Scholar 

  3. Dougherty, J. P. & Temin, H. M. Proc. natn. Acad. Sci. U.S.A. 84, 1197–1201 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Benz, E. W. Jr. Wydro, R. M., Nadal-Ginard, B. & Dina, D. Nature 288, 665–669 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Seiki, M., Hattori, S., Hirayama, Y. & Yoshida, M. Proc. natn. Acad. Sci. U.S.A. 80, 3618–3622 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Bonneville, J. M., Hohn, T. & Pfeiffer, P. RNA Genetics Vol. 2 (eds Domingo, E., Holland, J. J. & Ahlquist, P.) 23–42 (CRC Press, Baton Rouge, 1988).

    Google Scholar 

  7. Bevan, M., Barnes, W. & Chilton, M. D. Nucleic Acids Res. 11, 369–385 (1982).

    Article  Google Scholar 

  8. Depicker, A., Stachel, S., Dhaese, P., Zambryski, P. & Goodman, H. M. J. molec. appl. Genet. 1, 561–574 (1982).

    CAS  Google Scholar 

  9. Proudfoot, N. J. & Brownlee, G. G. Nature 263, 211–214 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Guilley, H., Dudley, R. K., Jonard, G., Balazs, E. & Richards, K. E. Cell 30, 763–773 (1982).

    Article  CAS  Google Scholar 

  11. Whitelaw, E. & Proudfoot, N. EMBO J. 5, 2915–2922 (1986).

    Article  CAS  Google Scholar 

  12. Logan, J., Falck-Pedersen, E., Darnell, J. E. Jr & Shenk, T. Proc. natn. Acad. Sci. U.S.A. 84, 8306–8310 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Connelly, S. & Manley, J. L. Genes Dev. 2, 440–452 (1988).

    Article  CAS  Google Scholar 

  14. Lanoix, J. & Acheson, N. H. EMBO J. 7, 2515–2522 (1988).

    Article  CAS  Google Scholar 

  15. Bunick, D., Zandomeni, R., Ackerman, S. & Weinmann, R. Cell 29, 877–886 (1982).

    Article  CAS  Google Scholar 

  16. Coppola, J. A., Field, A. S. & Luse, D. S. Proc. natn. Acad. Sci. U.S.A. 80, 1251–1255 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Denome, R. M. & Cole, C. N. Molec. Cell Biol. 8, 4829–4839 (1988).

    Article  CAS  Google Scholar 

  18. Pietrzak, M., Shillito, R. D., Hohn, T. & Potrykus, I. Nucleic Acids Res. 14, 5857–5868 (1986).

    Article  CAS  Google Scholar 

  19. Jefferson, R. A., Kavanagh, T. A. & Bevan, M. W. EMBO J. 6, 3901–3907 (1987).

    Article  CAS  Google Scholar 

  20. Marsh, J. L., Erfle, M. & Wykes, E. J. Gene 32, 481–485 (1984).

    Article  CAS  Google Scholar 

  21. Franck, G., Guilley, M., Jonard, G., Richards, K. & Hirth, L. Cell 21, 285–294 (1980).

    Article  CAS  Google Scholar 

  22. Vankan, P., Edoh, D. & Filipowicz, W. Nucleic Acids Res. 16, 10425–10440 (1988).

    Article  CAS  Google Scholar 

  23. Goodall, G. J. & Filipowicz, W. Cell 58, 473–483 (1989).

    Article  CAS  Google Scholar 

  24. Howarth, A. J., Gardner, J. C., Messing, J. & Shepherd, R. J. Virology 112, 678–685 (1981).

    Article  CAS  Google Scholar 

  25. Fromm, M., Taylor, L. P. & Walbot, V. Proc. natn. Acad. Sci. U.S.A. 82, 5824–5828 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanfaçon, H., Hohn, T. Proximity to the promoter inhibits recognition of cauliflower mosaic virus polyadenylation signal. Nature 346, 81–84 (1990). https://doi.org/10.1038/346081a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346081a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing