Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry

Abstract

MICROBIAL activity in aquifers plays an important part in the chemical evolution of ground water1–5. The most important terminal electron-accepting microbial processes in deeply buried anaerobic aquifers are iron reduction, sulphate reduction and methanogenesis5–8, each of which requires simple organic compounds or hydrogen (H2) as electron donors. Until now, the source of these compounds was unknown because the concentrations of dissolved organic carbon and sedimentary organic carbon in aquifers are extremely low9–11. Here we show that rates of microbial fermentation exceed rates of respiration in organic-rich aquitards (low-permeability sediments stratigraphically adjacent to higher-permeability aquifer sediments), resulting in a net accumulation of simple organic acids in pore waters. In aquifers, however, respiration outpaces fermentation, resulting in a net consumption of organic acids. The concentration gradient that develops in response to these two processes drives a net diffusive flux of organic acids from aquitards to aquifers. Diffusion calculations demonstrate that rates of organic acid transport are sufficient to account for observed rates of microbial respiration in aquifers. This overall process effectively links the large pool of sedimentary organic carbon in aquitards to microbial respiration in aquifers, and is a principal mechanism driving groundwater chemistry changes in aquifers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chapelle, F. H., Morris, J. T., McMahon, P. B. & Zelibor, J. L. Geology 16, 117–121 (1988).

    Article  ADS  CAS  Google Scholar 

  2. McMahon, P. B., Williams, D. F. & Morris, J. T. Ground Water 28, 693–702 (1990).

    Article  CAS  Google Scholar 

  3. Thorstenson, D. C., Fisher, D. W. & Croft, M. G. Wat. Resour. Res. 15, 1479–1498 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Carothers, W. W. & Kharaka, Y. K. Geochim. cosmochim. Acta 44, 323–332 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Grossman, E. L., Coffman, B. K., Fritz, S. J. & Wada, H. Geology 17, 495–499 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Lovley, D. R., Chapelle, F. H. & Phillips, E. J. P. Geology 18, 954–957 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Olson, G. J., Dockins, W. S., McFeters, G. A. & Iverson, W. P. Geomicrobiol. J. 2, 327–340 (1981).

    Article  CAS  Google Scholar 

  8. Chapelle, F. H., Zelibor, J. L., Grimes, O. J. & Knobel, L. L. Wat. Resour. Res. 23, 1625–1632 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Thurman, E. M. Organic Geochemistry of Natural Waters (Nijhoff and Junk, Boston, 1985).

    Book  Google Scholar 

  10. Ghiorse, W. C. & Wilson, J. T. Adv. appl. Microbiol. 33, 107–172 (1988).

    Article  CAS  Google Scholar 

  11. McMahon, P. B. thesis, Univ. South Carolina (1990).

  12. Chebotarev, I. I. Geochim. cosmochim. Acta 8, 22–48 (1955).

    Article  ADS  CAS  Google Scholar 

  13. Back, W. Prof. Pap. U.S. geol. Surv. 498-C (1966).

  14. Bennett, P. & Siegel, D. I. Nature 326, 684–686 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Gullett, C., McMahon, P. B. & Ehrlich, R. At. Mtg geol. Soc. Am. Abstr. Vol. 22, 37 (Geological Society of America, Dallas, 1990).

    Google Scholar 

  16. McMahon, P. B. & Chapelle, F. H. 1st Int. Symp. Microbiology of the Deep Subsurface, Abstr. with Prog. (eds Fliermans, C. & Hazen, T.) (Department of Energy, Orlando, 1990).

    Google Scholar 

  17. Chapelle, F. H. & Lovley, D. R. Appl. Envir. Microbiol. 56, 1865–1874 (1990).

    CAS  Google Scholar 

  18. Phelps, T. J., Raione, E. G., White, D. C. & Fliermans, C. B. Geomicrobiol. J. 7, 79–92 (1989).

    Article  Google Scholar 

  19. Thibodeaux, L. J. Chemodynamics (Wiley, New York, 1979).

    Google Scholar 

  20. Berner, R. A. Early Diagenesis (Princeton University Press, 1980).

    Google Scholar 

  21. Barcelona, M. J. Geochim. cosmochim. Acta 44, 1977–1984 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Lovley, D. R. & Goodwin, S. Geochim. cosmochim. Acta 52, 2993–3003 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Moncure, G. K., Lahann, R. W. & Siebert, R. M. Mem. Am. Ass. Petrol. Geol. 37, 151–161 (1984).

    CAS  Google Scholar 

  24. Manheim, F. T. Prof. Pap. U.S. Geol. Surv. 550-C, 256–261 (1966).

    Google Scholar 

  25. Lovley, D. R. & Phillips, E. J. P. Appl. Envir. Microbiol. 55, 3234–3236 (1989).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMahon, P., Chapelle, F. Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry. Nature 349, 233–235 (1991). https://doi.org/10.1038/349233a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349233a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing