Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct measurement of nitrogen gas fluxes from continental shelf sediments

Abstract

IT has been suggested that denitrification in continental shelf and slope sediments is the most important sink in the marine nitrogen cycle1–4. This conclusion has been reached, not from direct measurements of denitrification in these areas, but rather from indirect estimates derived from pore-water models of diagenetic processes. In highly bioturbated continental shelf and slope sediments with steep pore-water gradients, such indirect estimates may not be applicable5,6.1 have now made direct, in situ measurements of denitrification in sediments of the eastern North Pacific continental margin by determining the flux of molecular nitrogen out of the sediments into the overlying water. Denitrification rates in continental shelf sediments measured in this fashion averaged 3.7 pmol N cm−2s−1. The flux of nitrate from the overlying water into the sediments was only 1.5 pmol N cm−2s−1, showing that most of the nitrogen gas production is coupled to nitrification within the sediments. The denitrification rates observed here are four to five times those estimated previously by indirect methods for these same sediments, and indicate the limitations of such indirect estimates. My results suggest that the global denitrification rate in shelf and slope sediments may be greater than previously thought, and confirm the importance of sedimentary denitrification in the marine nitrogen budget.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Codispoti, L. A. & Christensen, J. P. Mar. Chem. 16, 277–300 (1985).

    Article  CAS  Google Scholar 

  2. Codispoti, L. A. in Production of the Oceans (eds Berger, W. H., Smetaceck, V. S. & Wefer, G.) 337–394 (Wiley, New York, 1989).

    Google Scholar 

  3. Christensen, J. P., Murray, J. W., Devol, A. H. & Codispoti, L. A. Global biogeochem. Cycles 1, 87–116 (1987).

    Article  ADS  Google Scholar 

  4. Bender, M. L. et al. Geochim. cosmochim. Acta. 53, 685–698 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Devol, A. H. Deep Sea Res. 34, 1007–1026 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Berelson, W. M., Hammond, D. E. & Johnson, K. S. Geochim. cosmochim. Acta 51, 1345–1363.

  7. Hattori, A. in Nitrogen in the Marine Environment (eds Carpenter, E. J. & Capone, O. G.) 191–232 (Academic, New York, 1983).

    Book  Google Scholar 

  8. Devol, A. H. Deep Sea Res. 25, 137–146 (1978).

    Article  ADS  Google Scholar 

  9. Naqvi, T. J. mar. Res. 45, 1049–1072 (1987).

    Article  CAS  Google Scholar 

  10. Billen, G. Am. J. Sci. 282, 512–541 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Jahnke, R. A., Emerson, S. R. & Murray, J. W. Limnol. Oceanogr. 27, 610–623 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Christensen, J. P., Smethie, W. M. & Devol, A. H. Deep Sea Res. 34, 1027–1047 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Berner, R. A. Early Diagenesis (Princeton University Press, 1980).

    Google Scholar 

  14. Aller, R. C. et al. Cont. Shelf Res. 4, 227–251 (1985).

    Article  ADS  Google Scholar 

  15. Carpenter, R., Bennett, H. T. & Peterson, M. L. Geochim. cosmochim. Acta 45, 1155–1172 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Carpenter, R. Deep Sea Res. 34, 881–896 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Archer, D. & Devol, A. H. Limnol. Oceanogr. (in the press).

  18. Noshoi, T., Koike, J. & Hattori, A. Appl. Envir. Microbiol. 26, 409–415 (1979).

    Google Scholar 

  19. Seitzinger, S. P., Nixon, S. W. & Pilson, M. E. Q. Limnol. Oceanogr. 29, 73–83 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Sorensen, J. Appl. envir. Microbiol. 35, 301–305 (1978).

    CAS  Google Scholar 

  21. Jenkens, M. C. & Kemp, W. M. Limnol. Oceanogr. 29, 609–619 (1984).

    Article  ADS  Google Scholar 

  22. Seitzinger, S. P. Limnol. Oceanogr. 33, 702–724 (1988).

    ADS  CAS  Google Scholar 

  23. Archer, D., Emerson, S. & Smith, C. J. Nature 340, 623–626 (1989).

    Article  ADS  Google Scholar 

  24. Christensen, J. P. & Rowe, G. T. J. mar. Res. 42, 1099–1116 (1984).

    Article  CAS  Google Scholar 

  25. Gardner, W. S., Nalepa, T. F. & Malczyk, J. M. Limnol. Oceanogr. 32, 1226–1238 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Emerson, S. R. et al. Earth planet. Sci. Lett 61, 220–232 (1980).

    Article  ADS  Google Scholar 

  27. Froelich, P. N. et al. Geochim. cosmochim. Acta 43, 1075–1090 (1979).

    Article  ADS  CAS  Google Scholar 

  28. Shaffer, G. & Ronner, U. Deep Sea Res. 31, 197–202 (1984).

    Article  ADS  CAS  Google Scholar 

  29. Parsons, T. R., Maita, Y. & Lalli, C. M. A Manual of Chemical and Biological Methods of Seawater Analysis (Pergamon, New York, 1984).

    Google Scholar 

  30. Kuivila, K. M. thesis (University of Washington, Seattle, 1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devol, A. Direct measurement of nitrogen gas fluxes from continental shelf sediments. Nature 349, 319–321 (1991). https://doi.org/10.1038/349319a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349319a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing