Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Localization of apical epithelial determinants by the basolateral PDZ protein Scribble

Abstract

The generation of membrane domains with distinct protein constituents is a hallmark of cell polarization. In epithelia, segregation of membrane proteins into apical and basolateral compartments is critical for cell morphology, tissue physiology and cell signalling. Drosophila proteins that confer apical membrane identity have been found1,2, but the mechanisms that restrict these determinants to the apical cell surface are unknown. Here we show that a laterally localized protein is required for the apical confinement of polarity determinants. Mutations in Drosophila scribble (scrib), which encodes a multi-PDZ (PSD-95, Discs-large and ZO-1) and leucine-rich-repeat protein, cause aberrant cell shapes and loss of the monolayer organization of embryonic epithelia. Scrib is localized to the epithelial septate junction, the analogue of the vertebrate tight junction3, at the boundary of the apical and basolateral cell surfaces. Loss of scrib function results in the misdistribution of apical proteins and adherens junctions to the basolateral cell surface, but basolateral protein localization remains intact. These phenotypes can be accounted for by mislocalization of the apical determinant Crumbs. Our results show that the lateral domain of epithelia, particularly the septate junction, functions in restricting apical membrane identity and correctly placing adherens junctions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: scrib mutations cause disorganization of epithelia.
Figure 2: Cloning of scrib.
Figure 3: Expression and localization of Scrib.
Figure 4: scrib embryos mislocalize apical proteins.

Similar content being viewed by others

References

  1. Wodarz, A., Hinz, U., Engelbert, M. & Knust, E. Expression of Crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 82, 67– 76 (1995).

    Article  CAS  Google Scholar 

  2. Bhat, M. A. et al. Discs Lost, a novel multi-PDZ domain protein, establishes and maintains epithelial polarity. Cell 96, 833–845 (1999).

    Article  CAS  Google Scholar 

  3. Bryant, P. J. Junction genetics. Dev. Genet. 20, 75– 90 (1997).

    Article  CAS  Google Scholar 

  4. Sieburth, D. S., Sun, Q. & Han, M. SUR-8, a conserved Ras-binding protein with leucine-rich repeats, positively regulates Ras-mediated signaling in C. elegans. Cell 94, 119–130 (1998).

    Article  CAS  Google Scholar 

  5. Suzuki, N. et al. Leucine-rich repeats and carboxyl terminus are required for interaction of yeast adenylate cyclase with RAS proteins. Proc. Natl Acad. Sci. USA 87, 8711–8715 ( 1990).

    Article  ADS  CAS  Google Scholar 

  6. Songyang, Z. et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275, 73– 77 (1997).

    Article  CAS  Google Scholar 

  7. Nagase, T., Seki, N., Tanaka, A., Ishikawa, K. & Nomura, N. Prediction of the coding sequences of unidentified human genes. IV. The coding sequences of 40 new genes (KIAA0121–KIAA0160) deduced by analysis of cDNA clones from human cell line KG-1. DNA Res. 2, 167–174 ( 1995).

    Article  CAS  Google Scholar 

  8. Tepass, U. Epithelial differentiation in Drosophila. BioEssays 19, 673–682 (1997).

    Article  CAS  Google Scholar 

  9. Tepass, U., Theres, C. & Knust, E. Crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61, 787– 799 (1990).

    Article  CAS  Google Scholar 

  10. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 ( 1993).

    CAS  PubMed  Google Scholar 

  11. Grawe, F., Wodarz, A., Lee, B., Knust, E. & Skaer, H. The Drosophila genes crumbs and stardust are involved in the biogenesis of adherens junctions. Development 122, 951–955 ( 1996).

    CAS  PubMed  Google Scholar 

  12. Cox, R. T., Kirkpatrick, C. & Peifer, M. Armadillo is required for adherens junction assembly, cell polarity, and morphogenesis during Drosophila embryogenesis. J. Cell Biol. 134, 133–148 (1996).

    Article  CAS  Google Scholar 

  13. Tepass, U. Crumbs, a component of the apical membrane, is required for zonula adherens formation in primary epithelia of Drosophila. Dev. Biol. 177, 217–225 ( 1996).

    Article  CAS  Google Scholar 

  14. Pawson, T. & Scott, J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075– 2080 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Balda, M. S. & Matter, K. Tight junctions. J. Cell Sci. 111, 541–547 ( 1998).

    CAS  PubMed  Google Scholar 

  16. Dragsten, P. R., Blumenthal, R. & Handler, J. S. Membrane asymmetry in epithelia: is the tight junction a barrier to diffusion in the plasma membrane? Nature 294, 718–722 (1981).

    Article  ADS  CAS  Google Scholar 

  17. van Meer, G. & Simons, K. The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J. 5, 1455–1464 (1986).

    Article  CAS  Google Scholar 

  18. Jou, T. S., Schneeberger, E. E. & Nelson, W. J. Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J. Cell Biol. 142, 101–115 (1998).

    Article  CAS  Google Scholar 

  19. Yeaman, C., Grindstaff, K. K. & Nelson, W. J. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol. Rev. 79, 73–98 (1999).

    Article  CAS  Google Scholar 

  20. Grindstaff, K. K. et al. Sec6/8 complex is recruited to cell–cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93, 731–740 (1998).

    Article  CAS  Google Scholar 

  21. Cao, T. T., Deacon, H. W., Reczek, D., Bretscher, A. & von Zastrow, M. A kinase-regulated PDZ-domain interaction controls endocytic sorting of the β2-adrenergic receptor. Nature 401, 286–290 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Fernandez-Larrea, J., Merlos-Suarez, A., Urena, J. M., Baselga, J. & Arribas, J. A role for a PDZ protein in the early secretory pathway for the targeting of proTGF-α to the cell surface. Mol. Cell 3, 423–433 (1999).

    Article  CAS  Google Scholar 

  23. Spradling, A. C. et al. The Berkeley Drosophila genome project gene disruption project. Single P-element insertions mutating 25% of vital drosophila genes. Genetics 153, 135–177 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Salzberg, A. et al. P-element insertion alleles of essential genes on the third chromosome of Drosophila melanogaster: mutations affecting embryonic PNS development. Genetics 147, 1723– 1741 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Brown, N. H. & Kafatos, F. C. Functional cDNA libraries from Drosophila embryos. J. Mol. Biol. 203, 425–437 (1988).

    Article  CAS  Google Scholar 

  26. Bilder, D., Graba, Y. & Scott, M. P. Wnt and TGFβ signals subdivide the AbdA Hox domain during Drosophila mesoderm patterning. Development 125, 1781–1790 (1998).

    CAS  PubMed  Google Scholar 

  27. Campos-Orgega, J. A. & Hartenstein, V. The Embryonic Development of Drosophila melanogaster (Springer, Heidelberg, 1997).

    Book  Google Scholar 

  28. Hacker, U. & Perrimon, N. DRhoGEF2 encodes a member of the DbI family of oncogenes and controls cell shape changes during gastrulation in Drosophila. Genes Dev. 12, 274 –284 (1998).

    Article  CAS  Google Scholar 

  29. Apperson, M. L., Moon, I. S. & Kennedy, M. B. Characterization of Densin-180, a new brain-specific synaptic protein of the O-sialoglycoprotein family. J. Neurosci. 16, 6839–6852 ( 1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank E. Knust, M. Bhat, D. Kiehart, R. Fehon, D. Cavener, H. Oda and K. Anderson for providing antibodies and fly stocks. We are indebted to Min Li for excellent technical assistance and B. Mathey-Prevot, M. Petitt, and I. The for comments on the manuscript. D.B. is an American Cancer Society Fellow. N.P. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bilder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilder, D., Perrimon, N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403, 676–680 (2000). https://doi.org/10.1038/35001108

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35001108

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing