Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the reovirus core at 3.6?Å resolution

Abstract

The reovirus core is an assembly with a relative molecular mass of 52 million that synthesizes, modifies and exports viral messenger RNA. Analysis of its structure by X-ray crystallography shows that there are alternative, specific and completely non-equivalent contacts made by several surfaces of two of its proteins; that the RNA capping and export apparatus is a hollow cylinder, which probably sequesters its substrate to ensure completion of the capping reactions; that the genomic double-stranded RNA is coiled into concentric layers within the particle; and that there is a protein shell that appears to be common to all groups of double-stranded RNA viruses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The reovirus core particle, represented by Cα traces of the constituent subunits. λ1 (relative molecular mass (Mr) 142K (ref.46), 120 copies; shown in red) forms the shell that packages RNA and defines the symmetry and size of the particle.
Figure 2: The λ1 shell.
Figure 3: Two conformations of λ1 and comparison with BTV VP3.
Figure 4: Subunit σ2 has 150 binding positions on the λ1 surface.
Figure 5: The λ1–σ2 interface.
Figure 6: The capping complex.

Similar content being viewed by others

References

  1. Fields,B. N. in Fields Virology (eds Fields, B. N., Knipe, D. M. & Howley, P. M.) 1553–1555 (Lippincott-Raven, Philadelphia, 1996).

    Google Scholar 

  2. Nibert,M. L., Schiff,L. A. & Fields, B. N. in Fields Virology (eds Fields, B. N., Knipe, D. M. & Howley, P. M.) 1557–1596 (Lippincott-Raven, Philadelphia, 1996).

    Google Scholar 

  3. Grimes,J. M. et al. The atomic structure of the bluetongue virus core. Nature 395, 470–478 ( 1998).

    Article  ADS  CAS  Google Scholar 

  4. Furuichi,Y., Muthukrishnan,S., Tomasz, J. & Shatkin,A. Mechanism and formation of reovirus mRNA 5′-terminal blocked and methylated sequence m7GpppGmpC. J. Biol. Chem. 251, 5043–5053 ( 1976).

    CAS  PubMed  Google Scholar 

  5. Earnshaw,W. C. & Harrison,S. C. DNA arrangement in isometric phage heads. Nature 268, 598– 602 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Dryden,K. A. et al. Internal structures containing transcriptase-related proteins in top component particles of mammalian orthoreovirus. Virology 245, 33–46 ( 1998).

    Article  CAS  Google Scholar 

  7. Gouet,P. et al. The highly ordered double-stranded RNA genome of bluetongue virus revealed by crystallography. Cell 97, 481 –490 (1999).

    Article  CAS  Google Scholar 

  8. Hill,C. L. et al. The structure of cypovirus and the functional organization of dsRNA viruses. Nature Struct. Biol. 6, 565 –568 (1999).

    Article  CAS  Google Scholar 

  9. Dryden,K. A. et al. Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: analysis of virions and subviral particles by cryoelectron microscopy and image reconstruction. J. Cell Biol. 122, 1023– 1041 (1993).

    Article  CAS  Google Scholar 

  10. Kohlstaedt,L. A., Wang,J., Friedman,J. M., Rice,P. A. & Steitz,T. A. Crystal structure of 3.5?Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256, 1783–1790 ( 1992).

    Article  ADS  CAS  Google Scholar 

  11. Stehle,T., Yan,Y., Benjamin,T. L. & Harrison,S. C. Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 369, 160–163 ( 1994).

    Article  ADS  CAS  Google Scholar 

  12. Liddington,R. C. et al. Structure of simian virus 40 at 3.8?Å resolution. Nature 354, 278–284 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Labbe,M., Charpilienne,A., Crawford, S. E., Estes,M. K. & Cohen,J. Expression of rotavirus VP2 produces empty corelike particles. J. Virol. 65, 2946–2952 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Moss,S. R. & Nuttall,P. A. Subcore- and core-like particles of Broadhaven virus (BRDV), a tick-bourne orbivirus, synthesized from baculovirus expressed VP2 and VP7, the major core proteins of BRVD. Virus Res. 32, 401–407 ( 1994).

    Article  CAS  Google Scholar 

  15. Xu,P., Miller,S. & Joklik,W. K. Generation of reovirus core-like particles in cells infected with hybrid vaccinia viruses that express genome segments L1, L2, L3, and S2. Virology 197, 726– 731 (1993).

    Article  CAS  Google Scholar 

  16. Mao,Z. & Joklik,W. K. Isolation and enzymatic characterization of protein λ2, the reovirus guanylyltransferase. Virology 185, 377–386 ( 1991).

    Article  CAS  Google Scholar 

  17. Luongo,C. L., Reinisch,K. M., Harrison, S. C. & Nibert,M. L. Identification of the guanylyltransferase region and active site in reovirus mRNA capping protein l2. J. Biol. Chem. 275, 2804–2810 (2000).

    Article  CAS  Google Scholar 

  18. Håkansson,K., Doherty,A. J., Shuman,S. & Wigley,D. B. X-ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzymes. Cell 89, 545–553 (1997).

    Article  Google Scholar 

  19. Schluckebier,G., O'Gara,M., Saenger,W. & Cheng,X. Universal catalytic domain structure of AdoMet-dependent methyltransferases. J. Mol. Biol. 247, 16–20 ( 1995).

    Article  CAS  Google Scholar 

  20. Hodel,A. E., Gershon,P. D., Shi,X. & Quiocho,F. A. The 1.85?Å structure of the vaccinia protein VP39: a bifunctional enzyme that participates in the modification of both mRNA ends. Cell 85, 247–256 (1996).

    Article  CAS  Google Scholar 

  21. Hu,G., Gershon,P. D., Hodel,A. E. & Quiocho,F. A. mRNA cap recognition: dominant role of enhanced stacking interactions between methylated bases and protein aromatic side chains. Proc. Natl Acad. Sci. USA 96, 7149–7154 ( 1999).

    Article  ADS  CAS  Google Scholar 

  22. Wickner,S., Maurizi,M. R. & Gottesman, S. Posttranslational quality control: Folding, refolding, and degrading proteins. Science 286, 1888 –1893 (1999).

    Article  CAS  Google Scholar 

  23. Earnshaw,W. C., King,J., Harrison,S. C. & Eiserling,F. A. The structural organization of DNA packaged within the heads of T4 wild-type, isometric and giant bacteriophages. Cell 14, 559– 568 (1978).

    Article  CAS  Google Scholar 

  24. Harvey,J. D., Bellamy,A. R., Earnshaw,W. C. & Schutt,C. Biophysical studies of reovirus type 3: iv low-angle x-ray diffraction studies. Virology 112, 240–249 (1981).

    Article  CAS  Google Scholar 

  25. Harrison,S. C. Packaging of DNA into bacteriophage heads: a model. J. Mol. Biol. 171, 577–580 ( 1983).

    Article  CAS  Google Scholar 

  26. Cerritelli,M. E. et al. Encapsidated conformations of bacteriophage T7 DNA. Cell 91, 271–280 ( 1997).

    Article  CAS  Google Scholar 

  27. Booy,F. P. et al. Liquid crystalline, phage-like packing of encapsidated DNA in herpes simplex virus. Cell 64, 1007– 1015 (1991).

    Article  CAS  Google Scholar 

  28. Butcher,S. J., Dokland,T., Ojala,P. M., Bamford,D. H. & Fuller, S. D. Intermediates in the assembly pathway of the double-stranded RNA virus φ6. EMBO J. 16, 4477– 4487 (1997).

    Article  CAS  Google Scholar 

  29. Cheng,R. H. et al. Fungal virus capsids, cytoplasmic compartments for the replication of double-stranded RNA, formed as icosahedral shells of asymmetric Gag dimers. J. Mol. Biol. 244, 255– 258 (1994).

    Article  CAS  Google Scholar 

  30. Shaw,A. L., Samal,S. K., Subramanian, K. & Prasad,B. V. V. The structure of aquareovirus shows how the different geometries of the two layers of capsid are reconciled to provide symmetrical interactions and stabilization. Structure 4, 957– 967 (1996).

    Article  CAS  Google Scholar 

  31. Zhang,H. et al. Visualization of protein–RNA interactions in cytoplasmic polyhedrosis virus. J. Virol. 73, 1624– 1629 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Prasad,B. V., Wang,G. J., Clerx,J. P. & Chiu,W. Three-dimensional structure of rotavirus. J. Mol. Biol. 199, 269–275 (1988).

    Article  CAS  Google Scholar 

  33. Coombs,K. M., Fields,B. N. & Harrison, S. C. Crystallization of the reovirus type 3 Dearing core. J. Mol. Biol. 215, 1–5 (1990).

    Article  CAS  Google Scholar 

  34. Otwinowski,Z. & Minor,W. in Macromolecular Crystallography A (eds Carter, C. W. & Sweet, R. M.) 307–326 (Academic, New York, 1997).

    Book  Google Scholar 

  35. CCP4. The CCP4 suite: programs for X-ray crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  36. Jones,T. A. in Molecular Replacement (eds Dodson, E. J., Gover, S. & Wolf, W.) 91–105 (SERC Daresbury Laboratory, Warrington, 1992).

    Google Scholar 

  37. Kleywegt,G. J. & Jones,T. A. in From First Map to Final Model (eds Bailey, S., Hubbard, R. & Waller, D.) 59–66 (SERC Daresbury Laboratory, Warrington, 1994).

    Google Scholar 

  38. Jones,T. A., Zou,J. Y., Cowan,S. W. & Kjelgaard,M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  39. Brunger,A. T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  40. Jacobsen,D. H., Hogle,J. M. & Filman, D. J. A pseudo-cell based approach to efficient crystallographic refinement of viruses. Acta Crystallogr. D 52, 693–711 (1996).

    Article  Google Scholar 

  41. Laskowski,R. A., MacArthur,M. W., Moss,D. S. & Thornton,J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283– 291 (1993).

    Article  CAS  Google Scholar 

  42. Carson,M. in Macromolecular Enzymology (eds Carter, C. W. Jr & Sweet, R. M.) 493–505 (Academic, New York, 1996).

    Google Scholar 

  43. Esnouf,R. M. An extensively modified version of Molscript that includes greatly enhanced coloring capabilities. J. Mol. Graphics 15, 133–138 (1997).

    Google Scholar 

  44. Merrit,E. A. & Murphy,M. E. P. Raster3D version 2.0. A program for photorealistic molecular graphics. Acta Crsytallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

  45. Nicholls,A., Sharp,K. A. & Honig,B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  46. Harrison,S. J. et al. Mammalian reovirus L3 gene sequences and evidence for a distinct amino-terminal region of the lambda1 protein. Virology 258, 54–64 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. F. Severson, R. L. Margraf and S. J. Harrison for growing reovirus-infected cells; T. S. Baker and S. B. Walker for providing us with an unpublished cryoEM reconstruction of cores from reovirus reassortant F18; D. Thiel and the staff of CHESS and McCHESS and R. Pahl and the staff of the BioCars beamline 14-ID-B for assistance; members of the Harrison laboratory, especially J. Cruzan, for scanning image plates; W. Minor for help with data collected with an early version of the double image plate cassette holder; B. Miller for constructing an improved vacuum-based version; S. Ray for advice on computing strategies; P. Adams and R. Grosse-Kunstleve for advice on refinement; and R. Grosse-Kunstleve for implementing refinement in the smaller rhombohedral cell. K.M.R. thanks D. W. Rodgers for help in the initial cryopreservation attempts, for suggesting a vacuum-based design for the double image plate cassette holder and for advice. We acknowledge support from the NIH (to S.C.H. and M.L.N.). S.C.H. is an investigator in the Howard Hughes Medical Institute. M.L.N. receives support from a grant of the Lucille P. Markey Charitable Trust to the Institute for Molecular Virology and, as a Shaw Scientist, from the Milwaukee Foundation. This work was started with the stimulus and collaboration of the late B. N. Fields.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinisch, K., Nibert, M. & Harrison, S. Structure of the reovirus core at 3.6?Å resolution. Nature 404, 960–967 (2000). https://doi.org/10.1038/35010041

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35010041

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing