Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

LAG-3 is a putative transcriptional activator in the C. elegans Notch pathway

Abstract

Notch signalling controls growth, differentiation and patterning during normal animal development1,2; in humans, aberrant Notch signalling has been implicated in cancer and stroke3,4. The mechanism of Notch signalling is thought to require cleavage of the receptor in response to ligand binding5, movement of the receptor's intracellular domain to the nucleus6,7, and binding of that intracellular domain to a CSL (for CBF1, Suppressor of Hairless, LAG-1)8,9 protein. Here we identify LAG-3, a glutamine-rich protein that forms a ternary complex together with the LAG-1 DNA-binding protein10 and the receptor's intracellular domain. Receptors with mutant ankyrin repeats that abrogate signal transduction are incapable of complex formation both in yeast and in vitro. Using RNA interference, we find that LAG-3 activity is crucial in Caenorhabditis elegans for both GLP-1 and LIN-12 signalling. LAG-3 is a potent transcriptional activator in yeast, and a Myc-tagged LAG-3 is predominantly nuclear in C. elegans. We propose that GLP-1 and LIN-12 promote signalling by recruiting LAG-3 to target promoters, where it functions as a transcriptional activator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LAG-3 and ternary complex formation in yeast.
Figure 2: LAG-3 forms a ternary complex in vitro with GLP-1(RAM-ANK) and LAG-1.
Figure 3: lag-3 is critical for both glp-1 and lin-12 signalling.
Figure 4: LAG-3 may function as a transcriptional activator.

Similar content being viewed by others

References

  1. Kimble, J. & Simpson, P. The LIN-12/Notch signalling pathway and its regulation. Annu. Rev. Cell Dev. Biol. 13, 333–361 (1997).

    Article  CAS  Google Scholar 

  2. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signalling: cell fate control and signal integration in development. Science 284, 770– 776 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 ( 1991).

    Article  CAS  Google Scholar 

  4. Joutel, A. et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383, 707–710 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Struhl, G. & Adachi, A. Nuclear access and action of Notch in vivo. Cell 93, 649– 660 (1998).

    Article  CAS  Google Scholar 

  7. Lecourtois, M. & Schweisguth, F. Indirect evidence for Delta-dependent intracellular processing of notch in Drosophila embryos. Curr. Biol. 8, 771–774 ( 1998).

    Article  CAS  Google Scholar 

  8. Roehl, H., Bosenberg, M., Blelloch, R. & Kimble, J. Roles of the RAM and ANK domains in signalling by the C. elegans GLP-1 receptor. EMBO J. 15, 7002– 7012 (1996).

    Article  CAS  Google Scholar 

  9. Tamura, K. et al. Physical interaction between a novel domain of receptor Notch and the transcription factor RBP-Jκ/Su(H). Curr. Biol. 5, 1416–1423 (1995).

    Article  CAS  Google Scholar 

  10. Christensen, S., Kodoyianni, V., Bosenberg, M., Friedman, L. & Kimble, J. lag-1, a gene required for lin-12 and glp-1 signalling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H). Development 122, 1373–1383 ( 1996).

    CAS  PubMed  Google Scholar 

  11. Roehl, H. & Kimble, J. Control of cell fate in C. elegans by a GLP-1 peptide consisting primarily of ankyrin repeats. Nature 364, 632–635 ( 1993).

    Article  ADS  CAS  Google Scholar 

  12. Greenwald, I. & Seydoux, G. Analysis of gain-of-function mutations of the lin-12 gene of Caenorhabditis elegans. Nature 346, 197–199 ( 1990).

    Article  ADS  CAS  Google Scholar 

  13. Kodoyianni, V., Maine, E. M. & Kimble, J. Molecular basis of loss-of-function mutations in the glp-1 gene of Caenorhabditis elegans. Mol. Biol. Cell 3, 1199–1213 ( 1992).

    Article  CAS  Google Scholar 

  14. Mango, S. E., Maine, E. M. & Kimble, J. Carboxy-terminal truncation activates glp-1 protein to specify vulval fates in Caenorhabditis elegans. Nature 352, 811–815 ( 1991).

    Article  ADS  CAS  Google Scholar 

  15. Austin, J. & Kimble, J. glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans . Cell 51, 589–599 (1987).

    Article  CAS  Google Scholar 

  16. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Greenwald, I. S., Sternberg, P. W. & Horvitz, H. R. The lin-12 locus specifies cell fates in Caenorhabditis elegans. Cell 34, 435 –444 (1983).

    Article  CAS  Google Scholar 

  18. Berry, L. W., Westlund, B. & Schedl, T. Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. Development 124, 925– 936 (1997).

    CAS  PubMed  Google Scholar 

  19. Mitchell, P. J. & Tjian, R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245, 371–378 ( 1989).

    Article  ADS  CAS  Google Scholar 

  20. Hicks, G. R. & Raikhel, N. Y. Protein import into the nucleus: an integrated view. Annu. Rev. Cell Dev. Biol. 11, 155–188 (1995).

    Article  CAS  Google Scholar 

  21. Diederich, R. J., Matsuno, K., Hing, H. & Artavanis-Tsakonas, S. Cytosolic interaction between deltex and Notch ankyrin repeats implicates deltex in the Notch signalling pathway. Development 120, 473–481 (1994).

    CAS  PubMed  Google Scholar 

  22. Kopan, R., Nye, J. S. & Weintraub, H. The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 120, 2385– 2396 (1994).

    CAS  PubMed  Google Scholar 

  23. Jarriault, S. et al. Signalling downstream of activated mammalian Notch. Nature 377, 355–358 ( 1995).

    Article  ADS  CAS  Google Scholar 

  24. Kato, H. et al. Involvement of RBP-J in biological functions of mouse Notch1 and its derivatives. Development 124, 4133 –4141 (1997).

    CAS  PubMed  Google Scholar 

  25. Smoller, D. et al. The Drosophila neurogenic locus mastermind encodes a nuclear protein unusually rich in amino acid homopolymers. Genes Dev. 4, 1688–1700 ( 1990).

    Article  CAS  Google Scholar 

  26. Bartel, P. L. & Fields, S. (eds) The Yeast Two-Hybrid System (Oxford Univ. Press, New York, 1997).

    Google Scholar 

  27. Kraemer, B. et al. NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans. Curr. Biol. 9, 1009–1018 ( 1999).

    Article  CAS  Google Scholar 

  28. The C. elegans Sequencing Consortium., Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998); erratum ibid 283, 35 (1999); erratum ibid 283, 2103 (1998).

    Article  Google Scholar 

  29. Subramaniam, K. & Seydoux, G. nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development 126, 4861–4871 (1999).

    CAS  PubMed  Google Scholar 

  30. Crittenden, S. L. & Kimble, J. in Cell: A Laboratory Manual (eds Spector, D., Goldman, R. & Leinwand, L.) 108.101 –108.109 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1998).

    Google Scholar 

Download references

Acknowledgements

We acknowledge A. Puoti for providing the plasmid form of the cDNA library; R. Sternglanz, S. M. Hollenberg and A. Grimson for yeast strains and plasmids; and A. Steinberg and L. Vanderploeg for help with the illustrations. A.G.P. is an Howard Hughes Medical Institute predoctoral fellow. J.K. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Kimble.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petcherski, A., Kimble, J. LAG-3 is a putative transcriptional activator in the C. elegans Notch pathway. Nature 405, 364–368 (2000). https://doi.org/10.1038/35012645

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35012645

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing