Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunostructural evidence for the template mechanism of microtubule nucleation

Abstract

Two opposing models have been proposed to explain how the γ-tubulin ring complex (γTuRC) induces microtubule nucleation. In the ‘protofilament’ model, the γTuRC induces nucleation as a partially or completely straightened protofilament that is incorporated longitudinally into the wall of the nascent microtubule, whereas the ‘template’ model proposes that the γTuRC acts as a helical template that constitutes the base of the newly-formed polymer. Here we appraise these two models, using high-resolution structural and immunolocalization methods. We show that components of the γTuRC localize to a narrow zone at the extreme minus end of the microtubule and that these ends terminate in a pointed cap. Together, these results strongly favour the template model of microtubule nucleation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Light microscopic visualization of γ-TuRC components at the ends of single microtubules.
Figure 2: Ultrastructural localization of γ-TuRC components at microtubule ends.
Figure 3: Distribution of γ-TuRC components and comparison to predictions of the template and protofilament models of microtubule nucleation.
Figure 4: Models of the microtubule-nucleating and -capping structure.

Similar content being viewed by others

References

  1. Keating, T. J., Peloquin, J. G., Rodionov, V. I., Momcilovic, D. & Borisy, G. G. Microtubule release from the centrosome . Proc. Natl Acad. Sci. USA 94, 5078– 5083 (1997).

    Article  CAS  Google Scholar 

  2. Mogensen, M. M., Mackie, J. B., Doxsey, S. J., Stearns, T. & Tucker, J. B. Centrosomal deployment of γ-tubulin and pericentrin: evidence for a microtubule-nucleating domain and a minus-end docking domain in certain mouse epithelial cells. Cell Motil. Cytoskeleton 36, 276–290 ( 1997).

    Article  CAS  Google Scholar 

  3. Ahmad, F. J., Echeverri, C. J., Vallee, R. B. & Baas, P. W. Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon. J. Cell Biol. 140, 391– 401 (1998).

    Article  CAS  Google Scholar 

  4. Keating, T. J. & Borisy, G. G. Centrosomal and non-centrosomal microtubules. Biol. Cell 91, 321– 329 (1999).

    Article  CAS  Google Scholar 

  5. Oakley, B. R., Oakley, C. E., Yoon, Y. & Jung, M. K. γ-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell 61, 1289– 1301 (1990).

    Article  CAS  Google Scholar 

  6. Horio, T. et al. The fission yeast γ-tubulin is essential for mitosis and is localized at microtubule organizing centers. J. Cell Sci. 99, 693–700 (1991).

    CAS  PubMed  Google Scholar 

  7. Joshi, H. C., Palacios, M. J., McNamara, L. & Cleveland, D. W. γ-tubulin is a centrosomal protein required for cell-cycle-dependent microtubule nucleation. Nature 356, 80– 83 (1992).

    Article  CAS  Google Scholar 

  8. Stearns, T. & Kirschner, M. In vitro reconstitution of centrosome assembly and function: the central role of γ-tubulin. Cell 76, 623–637 ( 1994).

    Article  CAS  Google Scholar 

  9. Sobel, S. G. & Snyder, M. A highly divergent γ-tubulin gene is essential for cell growth and proper microtubule organization in Saccharomyces cerevisiae. J. Cell Biol. 131, 1775– 1788 (1995).

    Article  CAS  Google Scholar 

  10. Li, Q. & Joshi, H. C. γ-tubulin is a minus-end-specific microtubule binding protein. J. Cell Biol. 131, 207–214 (1995).

    Article  CAS  Google Scholar 

  11. Zheng, Y., Wong, M. L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature 378, 578–583 ( 1995).

    Article  CAS  Google Scholar 

  12. Oegema, K. et al. Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules. J. Cell Biol. 144, 721–733 (1999).

    Article  CAS  Google Scholar 

  13. Moritz, M., Braunfeld, M. B., Sedat, J. W., Alberts, B. & Agard, D. A. Microtubule nucleation by γ-tubulin-containing rings in the centrosome. Nature 378, 638 –640 (1995).

    Article  CAS  Google Scholar 

  14. Pereira, G. & Schiebel, E. Centrosome-microtubule nucleation . J. Cell Sci. 110, 295– 300 (1997).

    CAS  PubMed  Google Scholar 

  15. Wiese, C. & Zheng, Y. γ-tubulin complexes and their interaction with microtubule-organizing centers. Curr. Opin. Struct. Biol. 9, 250–259 ( 1999).

    Article  CAS  Google Scholar 

  16. Jeng, R. & Stearns, T. γ-tubulin complexes: size does matter. Trends Cell Biol. 9, 339– 342 (1999).

    Article  CAS  Google Scholar 

  17. Schiebel, E. γ-tubulin complexes: binding to the centrosome, regulation and microtubule nucleation. Curr. Opin. Cell Biol. 12, 113 –118 (2000).

    Article  CAS  Google Scholar 

  18. Fan, J., Griffiths, A. D., Lockhart, A., Cross, R. A. & Amos, L. A. Microtubule minus ends can be labelled with a phage display antibody specific to α-tubulin. J. Mol. Biol. 259, 325–330 ( 1996).

    Article  CAS  Google Scholar 

  19. Erickson, H. P. & Stoffler, D. Protofilaments and rings, two conformations of the tubulin family conserved from bacterial FtsZ to α/β and γ tubulin. J. Cell Biol. 135, 5–8 (1996).

    Article  CAS  Google Scholar 

  20. Warner, F. D. & Satir, P. The substructure of ciliary microtubules . J. Cell Sci. 12, 313– 326 (1973).

    CAS  PubMed  Google Scholar 

  21. Martin, O. C., Gunawardane, R. N., Iwamatsu, A. & Zheng, Y. Xgrip109: a γ-tubulin-associated protein with an essential role in γ-tubulin ring complex (γTuRC) assembly and centrosome function. J. Cell Biol. 141, 675–687 ( 1998).

    Article  CAS  Google Scholar 

  22. Verde, F., Berrez, J. M., Antony, C. & Karsenti, E. Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein. J. Cell Biol. 112, 1177–1187 (1991).

    Article  CAS  Google Scholar 

  23. Echeverri, C. J., Paschal, B. M., Vaughan, K. T. & Vallee, R. B. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis . J. Cell Biol. 132, 617– 633 (1996).

    Article  CAS  Google Scholar 

  24. Svitkina, T. M. & Borisy, G. G. Correlative light and electron microscopy of the cytoskeleton of cultured cells. Methods Enzymol. 298, 570–592 (1998).

    Article  CAS  Google Scholar 

  25. Byers, B., Shriver, K. & Goetsch, L. The role of spindle pole bodies and modified microtubule ends in the initiation of microtubule assembly in Saccharomyces cerevisiae . J. Cell Sci. 30, 331–352 (1978).

    CAS  PubMed  Google Scholar 

  26. Bullitt, E., Rout, M. P., Kilmartin, J. V. & Akey, C. W. The yeast spindle pole body is assembled around a central crystal of Spc42p . Cell 89, 1077–1086 (1997).

    Article  CAS  Google Scholar 

  27. O’Toole, E. T. Winey, M. & McIntosh, J. R. High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 10, 2017 –2031 (1999).

    Article  Google Scholar 

  28. Erickson, H. P., Taylor, D. W., Taylor, K. A. & Bramhill, D. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc. Natl Acad. Sci. USA 93, 519–523 (1996).

    Article  CAS  Google Scholar 

  29. Knop, M. & Schiebel, E. Spc98p and Spc97p of the yeast g-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J. 16, 6985– 6995 (1997).

    Article  CAS  Google Scholar 

  30. Murphy, S. M., Urbani, L. & Stearns, T. The mammalian γ-tubulin complex contains homologues of the yeast spindle pole body components spc97p and spc98p. J. Cell Biol. 141, 663–674 (1998).

    Article  CAS  Google Scholar 

  31. Moritz, M., Zheng, Y., Alberts, B. M. & Oegema, K. Recruitment of the γ-tubulin ring complex to Drosophila salt-stripped centrosome scaffolds. J. Cell Biol. 142, 775– 786 (1998).

    Article  CAS  Google Scholar 

  32. Oakley, C. E. & Oakley, B. R. Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338, 662– 664 (1989).

    Article  CAS  Google Scholar 

  33. Llanos, R., et al. Tubulin binding sites on γ-tubulin: identification and molecular characterization. Biochemistry 38, 15712–15720 (1999).

    Article  CAS  Google Scholar 

  34. Mitchison, T. J. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 109, 637– 652 (1989).

    Article  CAS  Google Scholar 

  35. Murray, A. W. Cell cycle extracts. Methods Cell Biol. 36, 581–605 (1991).

    Article  CAS  Google Scholar 

  36. Wittmann, T. & Hyman, T. Recombinant p50/dynamitin as a tool to examine the role of dynactin in intracellular processes. Methods Cell Biol. 61, 137–143 ( 1999).

    Article  CAS  Google Scholar 

  37. Nogales, E., Wolf, S. G. & Downing, K. H. Structure of the α/β-tubulin dimer by electron crystallography. Nature 391, 199– 203 (1998).

    Article  CAS  Google Scholar 

  38. Hughes, D. A. & Beesley, J. E. Preparation of colloidal gold probes. Methods Mol. Biol. 80, 275– 282 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Echeverri and R. Vallee for the p50/dynamitin construct, R. Vale and F. McNally for the hKin560-his construct, B. Bement for gravid frogs and T. Svitkina for assistance with electron-microscopy work. We are grateful to B. Bement, J. Peloquin and members of the Borisy laboratory for discussions and advice, to S. Limbach for technical assistance and to L. Olds for help in preparing the figures. This work was supported by a Postdoctoral Fellowship from the American Cancer Society (to T.J.K.) and by NIH grant GM25062 (to G.G.B.).

Correspondence and requests for materials should be addressed to T.J.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Keating.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keating, T., Borisy, G. Immunostructural evidence for the template mechanism of microtubule nucleation . Nat Cell Biol 2, 352–357 (2000). https://doi.org/10.1038/35014045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35014045

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing