Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A chemical switch for inhibitor-sensitive alleles of any protein kinase

Abstract

Protein kinases have proved to be largely resistant to the design of highly specific inhibitors, even with the aid of combinatorial chemistry1. The lack of these reagents has complicated efforts to assign specific signalling roles to individual kinases. Here we describe a chemical genetic strategy for sensitizing protein kinases to cell-permeable molecules that do not inhibit wild-type kinases2. From two inhibitor scaffolds, we have identified potent and selective inhibitors for sensitized kinases from five distinct subfamilies. Tyrosine and serine/threonine kinases are equally amenable to this approach. We have analysed a budding yeast strain carrying an inhibitor-sensitive form of the cyclin-dependent kinase Cdc28 (CDK1) in place of the wild-type protein. Specific inhibition of Cdc28 in vivo caused a pre-mitotic cell-cycle arrest that is distinct from the G1 arrest typically observed in temperature-sensitive cdc28 mutants3. The mutation that confers inhibitor-sensitivity is easily identifiable from primary sequence alignments. Thus, this approach can be used to systematically generate conditional alleles of protein kinases, allowing for rapid functional characterization of members of this important gene family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of mutant kinase inhibitors.
Figure 2: Selective disruption of fus3-as1 yeast mating by analogue 8.
Figure 3: Characterization of the cdc28-as1 mutant.
Figure 4: Characterization of cdc28-as1 phenotype at different concentrations of analogue 9.
Figure 5: Treatment with 500 nM 9 leads to a drop in G2/M transcription.

Similar content being viewed by others

References

  1. Gray, N. S. et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281, 533–538 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Bishop, A. C. et al. Generation of monospecific nanomolar tyrosine kinase inhibitors via a chemical genetic approach. J. Am. Chem. Soc. 121, 627–631 (1999).

    Article  CAS  Google Scholar 

  3. Reed, S. I. The selection of S. cerevisiae mutants defective in the start event of cell division. Genetics 95, 561– 577 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, Y., Shah, K., Yang, F., Witucki, L. & Shokat, K. M. Engineering Src family protein kinases with unnatural nucleotide specificity. Chem. Biol. 5, 91 –101 (1998).

    Article  CAS  Google Scholar 

  5. Hanke, J. H. et al. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. J. Biol. Chem. 271, 695 –701 (1996).

    Article  CAS  Google Scholar 

  6. Brown, M. T. & Cooper, J. A. Regulation, substrates and functions of src. Biochim. Biophys. Acta 1287, 121 –149 (1996).

    PubMed  Google Scholar 

  7. Resh, M. D. Fyn, a Src family tyrosine kinase. Int. J. Biochem. Cell Biol. 30, 1159–1162 ( 1998).

    Article  CAS  Google Scholar 

  8. Laneuville, P. Abl tyrosine protein kinase. Semin. Immunol. 7, 255–266 (1995).

    Article  CAS  Google Scholar 

  9. Kelly, P. T. Calmodulin-dependent protein kinase II. Multifunctional roles in neuronal differentiation and synaptic plasticity. Mol. Neurobiol. 5, 153–177 (1991).

    Article  CAS  Google Scholar 

  10. Morgan, D. O. Principles of CDK regulation. Nature 374, 131–134 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Lawrie, A. M. et al. Protein kinase inhibition by staurosporine revealed in details of the molecular interaction with CDK2. Nature Struct. Biol. 4, 796–801 (1997).

    Article  CAS  Google Scholar 

  12. Wood, J. L., Stoltz, B. M., Dietrich, H. J., Pflum, D. A. & Petsch, D. T. Design and implementation of an efficient synthetic approach to furanosylated indolocarbazoles: total synthesis of (+)- and (-)-K252a. J. Am. Chem. Soc. 119, 9641–9651 (1997).

    Article  CAS  Google Scholar 

  13. Liu, Y. et al. Structural basis for selective inhibition of Src family kinases by PP1. Chem. Biol. 6, 671– 678 (1999).

    Article  CAS  Google Scholar 

  14. Hunter, T. & Plowman, G. D. The protein kinases of budding yeast: six score and more. Trends Biochem. Sci. 22, 18–22 (1997).

    Article  CAS  Google Scholar 

  15. Fujimura, H. A. Yeast homolog of mammalian mitogen-activated protein kinase, Fus3/Dac2 kinase, is required both for cell fusion and for G1 arrest of the cell cycle and morphological changes by the cdc37 mutation. J. Cell. Sci. 107, 2617–2622 (1994).

    CAS  PubMed  Google Scholar 

  16. Doi, S. & Yoshimura, M. Temperature-sensitive loss of sexual agglutinability in Saccharomyces cerevisiae. Arch. Microbiol. 114, 287–288 (1977).

    Article  CAS  Google Scholar 

  17. Mendenhall, M. D. & Hodge, A. E. Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62, 1191–1243 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. King, R. W., Jackson, P. K. & Kirschner, M. W. Mitosis in transition. Cell 79, 563–571 (1994).

    Article  CAS  Google Scholar 

  19. Surana, U. et al. The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell 65, 145 –161 (1991).

    Article  CAS  Google Scholar 

  20. Bourne, Y. et al. Crystal structure and mutational analysis of the human CDK2 kinase complex with cell cycle-regulatory protein CksHs1. Cell 84, 863–874 ( 1996).

    Article  CAS  Google Scholar 

  21. Wodicka, L., Dong, H., Mittmann, M., Ho, M. H. & Lockhart, D. J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol. 15, 1359 –1367 (1997).

    Article  CAS  Google Scholar 

  22. Espinoza, F. H., Ogas, J., Herskowitz, I. & Morgan, D. O. Cell cycle control by a complex of the cyclin HCS26 (PCL1) and the kinase PHO85. Science 266, 1388–1391 ( 1994).

    Article  ADS  CAS  Google Scholar 

  23. Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273– 3297 (1998).

    Article  CAS  Google Scholar 

  24. Fitch, I. et al. Characterization of four B-type cyclin genes of the budding yeast Saccharomyces cerevisiae. Mol. Biol. Cell 3, 805–818 (1992).

    Article  CAS  Google Scholar 

  25. Stern, B. & Nurse, P. A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet. 12, 345–350 ( 1996).

    Article  CAS  Google Scholar 

  26. Farrell, A. & Morgan, D. O. Cdc37 promotes the stability of protein kinases Cdc28 and Cak1. Mol. Cell. Biol. 20 , 749–754 (2000).

    Article  CAS  Google Scholar 

  27. Sherman, F., Fink, G. & Lawrence, C. Methods in Yeast Genetics (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1974).

    Google Scholar 

  28. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Schindler, T. et al. Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor. Mol. Cell 3, 639–648 (1999).

    Article  CAS  Google Scholar 

  30. Biggins, S. et al. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev. 13, 532–544 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Schulman and E. Harlow for early characterization of mutant cyclin-dependent kinases; C. Co, V. Nguyen and J. Li for help with flow cytometry; D. Toczyski for help with the Coulter counter; A. Su for help with transcript array analysis; S. Jaspersen, C. Carroll, C. Takizawa, E. Weiss, S. Biggins, A. Szidon, A. Rudner, D. Kahne and A. Murray for helpful advice and reagents; E. O'Shea and R. Deshaies for strains and reagents. This work was supported by funding from the National Institute of Allergy and Immunology (K.M.S.), GlaxoWellcome (K.M.S. and J.L.W.), National Institute of General Medical Sciences (D.O.M.), National Institutes of Health (J.L.W.), Bristol-Myers Squibb (J.L.W.), Yamanouchi (J.L.W.) and a predoctoral fellowship from the National Science Foundation (J.A.U.). K.M.S. is a Pew, Searle, and a Sloan Foundation Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevan M. Shokat.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, A., Ubersax, J., Petsch, D. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase . Nature 407, 395–401 (2000). https://doi.org/10.1038/35030148

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35030148

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing