Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Force production by single kinesin motors

Abstract

Motor proteins such as kinesin, myosin and polymerase convert chemical energy into work through a cycle that involves nucleotide hydrolysis. Kinetic rates in the cycle that depend upon load identify transitions at which structural changes, such as power strokes or diffusive motions, are likely to occur. Here we show, by modelling data obtained with a molecular force clamp, that kinesin mechanochemistry can be characterized by a mechanism in which a load-dependent isomerization follows ATP binding. This model quantitatively accounts for velocity data over a wide range of loads and ATP levels, and indicates that movement may be accomplished through two sequential 4-nm substeps. Similar considerations account for kinesin processivity, which is found to obey a load-dependent Michaelis–Menten relationship.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Load-dependent isomerization.
Figure 2: Global fits of velocity to equations (1) and (4).
Figure 3: Global fits of mean run length to equation (5).
Figure 4: Proposed mechanochemical cycle of kinesin.

Similar content being viewed by others

References

  1. Howard, J. Molecular motors: structural adaptations to cellular functions. Nature 389, 561–567 (1997).

    Article  CAS  Google Scholar 

  2. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    Article  CAS  Google Scholar 

  3. Schnitzer, M. J. & Block, S. M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997).

    Article  CAS  Google Scholar 

  4. Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).

    Article  CAS  Google Scholar 

  5. Visscher, K., Schnitzer, M. J. & Block, S. M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999).

    Article  CAS  Google Scholar 

  6. Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994).

    Article  CAS  Google Scholar 

  7. Meyhöfer, E. & Howard, J. The force generated by a single kinesin molecule against an elastic load. Proc. Natl Acad. Sci. USA 92, 574–578 (1995).

    Article  Google Scholar 

  8. Coppin, C. M., Pierce, D. W., Hsu, L. & Vale, R. D. The load dependence of kinesin's mechanical cycle. Proc. Natl Acad. Sci. USA 94, 8539–8544 (1997).

    Article  CAS  Google Scholar 

  9. Kojima, H., Muto, E., Higuchi, H. & Yanagida, T. Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73, 2012–2022 (1997).

    Article  CAS  Google Scholar 

  10. Peskin, C. & Oster, G. Coordinated hydrolysis explains the mechanical behavior of kinesin. Biophys. J. 68, 202s–211s (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Duke, T. & Leibler, S. Motor protein mechanics: a stochastic model with minimal mechanochemical coupling. Biophys. J. 71, 1235–1247 (1996).

    Article  CAS  Google Scholar 

  12. Derényi, I. & Vicsek, T. The kinesin walk: a dynamic model with elastically coupled heads. Proc. Natl Acad. Sci. USA 93, 6775–6779 (1996).

    Article  Google Scholar 

  13. Astumian, R. D. Thermodynamics and kinetics of a brownian motor. Science 276, 917–922 (1997).

    Article  CAS  Google Scholar 

  14. Howard, J. The mechanics of force generation by kinesin. Biophys. J. 68, 245s–255s (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

    Article  CAS  Google Scholar 

  16. Hille, B. Ionic Channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts, 1992).

    Google Scholar 

  17. Ma, Y. Z. & Taylor, E. W. Mechanism of microtubule kinesin ATPase. Biochemistry 34, 13242–13251 (1995).

    Article  CAS  Google Scholar 

  18. Ma, Y. Z. & Taylor, E. W. Interacting head mechanism of microtubule-kinesin ATPase. J. Biol. Chem. 272, 724–730 (1997).

    Article  CAS  Google Scholar 

  19. Gilbert, S. P., Webb, M. R., Brune, M. & Johnson, K. A. Pathway of processive ATP hydrolysis by kinesin. Nature 373, 671–676 (1995).

    Article  CAS  Google Scholar 

  20. Gilbert, S. P., Moyer, M. L. & Johnson, K. A. Alternating site mechanism of the kinesin ATPase. Biochemistry 37, 792–799 (1998).

    Article  CAS  Google Scholar 

  21. Moyer, M. L., Gilbert, S. P. & Johnson, K. A. Pathway of ATP hydrolysis by monomeric and dimeric kinesin. Biochemistry 37, 800–813 (1998).

    Article  CAS  Google Scholar 

  22. Bagshaw, C. R. Muscle Contraction. (Chapman and Hall, London, 1993).

    Book  Google Scholar 

  23. Hackney, D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl Acad. Sci. USA 91, 6865–6869 (1994).

    Article  CAS  Google Scholar 

  24. Hackney, D. D. Highly processive microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains. Nature 377, 448–450 (1995).

    Article  CAS  Google Scholar 

  25. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).

    Article  CAS  Google Scholar 

  26. Hua, W., Young, E. C., Fleming, M. L. & Gelles, J. Coupling of kinesin steps to ATP hydrolysis. Nature 388, 390–393 (1997).

    Article  CAS  Google Scholar 

  27. Case, R. B., Rice, S., Hart, C. L., Ly, B. & Vale, R. D. Role of the kinesin neck linker and catalytic core in microtubule-based motility. Curr. Biol. 10, 157–160 (2000).

    Article  CAS  Google Scholar 

  28. Case, R. B., Pierce, D. W., Hom-Booher, N., Hart, C. L. & Vale, R. D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 90, 959–966 (1997).

    Article  CAS  Google Scholar 

  29. Henningsen, U. & Schliwa, M. Reversal in the direction of movement of a molecular motor. Nature 389, 93–96 (1997).

    Article  CAS  Google Scholar 

  30. Endow, S. A. & Waligora, K. W. Determinants of kinesin motor polarity. Science 281, 1200–1202 (1998).

    Article  CAS  Google Scholar 

  31. Nishiyama, M. et al. The rising phase of kinesin's 8nm step. Biophys. J. 78, 122A (2000).

    Google Scholar 

  32. Block, S. M., Goldstein, L. S. B. & Schnapp, B. J. Bead movement by single kinesin molecules studied with an optical tweezers. Nature 348, 348–352 (1990).

    Article  CAS  Google Scholar 

  33. Vale, R. D. et al. Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996).

    Article  CAS  Google Scholar 

  34. Hancock, W. O. & Howard, J. Kinesin's processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Proc. Natl Acad. Sci. USA 96, 13147–13152 (1999).

    Article  CAS  Google Scholar 

  35. Cross, R. A., Crevel, I., Carter, N. J., Alonso, M. C., Hirose, K. & Amos, L. A. The conformational cycle of kinesin. Phil. Trans. R. Soc. Lond. B 355, 459–464 (2000).

    Article  CAS  Google Scholar 

  36. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994).

    Article  CAS  Google Scholar 

  37. Visscher, K. & Block, S. M. Versatile optical traps with feedback control. Methods Enzymol. 298, 460–489 (1998).

    Article  CAS  Google Scholar 

  38. Visscher, K., Gross, S. P. & Block, S. M. Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J. Sel. Topics Quant. Elect. 2, 1066–1076 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Perkins and L. Satterwhite for helpful discussions, J. de Georgis for squid dissection, and D. Peoples for expert machining. Experiments were carried out at Princeton University and were supported by grants from the NIGMS, NSF and W.M. Keck Foundation (to S.M.B.), predoctoral fellowships from the American Heart Association, the Charlotte Elizabeth Proctor Fund and the Program in Mathematics and Molecular Biology Burroughs Wellcome Fund (to M.J.S.), and a postdoctoral fellowship from the Burroughs Wellcome Fund of the Life Sciences Research Foundation (to K.V.). Data analysis and modelling were also supported by Lucent Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koen Visscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnitzer, M., Visscher, K. & Block, S. Force production by single kinesin motors. Nat Cell Biol 2, 718–723 (2000). https://doi.org/10.1038/35036345

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036345

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing