Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Grabbing the cat by the tail: manipulating molecules one by one

Abstract

Methods for manipulating single molecules are yielding new information about both the forces that hold biomolecules together and the mechanics of molecular motors. We describe here the physical principles behind these methods, and discuss their capabilities and current limitations.

Key Points

  • Methods for manipulating single molecules are yielding new information about both the forces that hold biomolecules together and the mechanics of molecular motors.

  • All single-molecule manipulation methods require two basic elements: a probe, which is usually of microscopic dimensions, that can generate or detect forces and displacements; and a way to spatially locate the molecules.

  • Mechanical force transducers apply or sense forces through the displacement of a bendable beam. The most common examples are SFM cantilevers and microneedles.

  • The advantages of SFM are its high spatial range and sensitivity, its throughput (the ability to study many single molecules on a surface) and versatility.

  • Glass microneedles are usually softer than SFM cantilevers, giving them an advantage for probing delicate biological systems.

  • Unlike mechanical transducers, external fields act on molecules from a distance. These fields can be used to exert forces on molecules by acting either on the molecules themselves, or through 'handles' such as glass beads, polystyrene beads or metallic particles attached to the molecules.

  • Flow fields exert forces on objects through the transfer of momentum from the fluid to the object.

  • Magnetic fields can be used to manipulate and apply very stable and small forces to biomolecules that are tethered to magnetic particles.

  • Optical tweezers use radiation pressure (which stems from the momentum change as light refracts off an object) to hold objects in a focused laser beam, with which it is possible to generate a spring-like force.

  • The future of biomolecular manipulation depends on three factors: the integration and further development of single molecule techniques, progress in the field of nanotechnology, and the use of high-throughput systems such as microfluidics (microscopic liquid channels).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Applications of the scanning force microscope (SFM).
Figure 2: Using a microneedle to measure the force of myosin acting on actin.
Figure 3: Geometries of typical single-molecule experiments.
Figure 4: Geometries of typical optical-trap single-molecule experiments.

Similar content being viewed by others

References

  1. Bustamante, C., Smith, S., Liphardt, J. & Smith, D. Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol. 10, 279?285 (2000).

    Article  CAS  Google Scholar 

  2. Svoboda, K. & Block, S. M. Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247?285 (1994).

    Article  CAS  Google Scholar 

  3. Ludwig, M. et al. AFM, a tool for single-molecule experiments. Appl. Phys. Mater. Sci. Process. 68, 173? 176 (1999).

    Article  CAS  Google Scholar 

  4. Mehta, A. D., Rief, M. & Spudich, J. A. Biomechanics, one molecule at a time. J. Biol. Chem. 274, 14517?14520 (1999).

    Article  CAS  Google Scholar 

  5. Sarid, D. in Scanning Force Microscopy: With Applications to Electric, Magnetic, and Atomic Forces I?XI, 253 (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  6. Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: a comparison . Proc. Natl Acad. Sci. USA 96, 3694? 3699 (1999).

    Article  CAS  Google Scholar 

  7. Bustamante, C., Marko, J. F., Siggia, E. D. & Smith, S. Entropic elasticity of lambda-phage DNA. Science 265 , 1599?1600 (1994).

    Article  CAS  Google Scholar 

  8. Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122?1126 (1992). This first single-molecule study of DNA elasticity demonstrates the combined use of magnetic and flow fields.

    Article  CAS  Google Scholar 

  9. Marko, J. F. & Siggia, E. D. Stretching DNA. Macromolecules 28, 8759?8770 ( 1995).

    Article  CAS  Google Scholar 

  10. Erie, D. A., Yang, G., Schultz, H. C. & Bustamante, C. DNA bending by Cro protein in specific and nonspecific complexes: implications for protein site recognition and specificity. Science 266, 1562?1566 (1994).

    Article  CAS  Google Scholar 

  11. Wuite, G. J., Smith, S. B., Young, M., Keller, D. & Bustamante, C. Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404, 103?106 (2000).

    Article  CAS  Google Scholar 

  12. Kishino, A. & Yanagida, T. Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334, 74?76 (1988). The basic premise of microneedle manipulation is illustrated here in one of the earliest measurements of the force from biological molecules using a mechanical transducer.

    Article  CAS  Google Scholar 

  13. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry . Nature 365, 721?727 (1993).

    Article  CAS  Google Scholar 

  14. Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules . Nature 342, 154?158 (1989).

    Article  CAS  Google Scholar 

  15. Ishijima, A., Doi, T., Sakurada, K. & Yanagida, T. Sub-piconewton force fluctuations of actomyosin in vitro. Nature 352, 301?306 (1991).

    Article  CAS  Google Scholar 

  16. Nakajima, H. et al. Scanning force microscopy of the interaction events between a single molecule of heavy meromyosin and actin. Biochem. Biophys. Res. Commun. 234, 178?182 (1997).

    Article  CAS  Google Scholar 

  17. Rotsch, C., Jacobson, K. & Radmacher, M. Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy . Proc. Natl Acad. Sci. USA 96, 921? 926 (1999).

    Article  CAS  Google Scholar 

  18. Viani, M. B. et al. Small cantilevers for force spectroscopy of single molecules . J. Appl. Phys. 86, 2258? 2262 (1999).

    Article  CAS  Google Scholar 

  19. Müller, D. J., Baumeister, W. & Engel, A. Controlled unzipping of a bacterial surface layer with atomic force microscopy. Proc. Natl Acad. Sci. USA 96, 13170?13174 (1999).

    Article  Google Scholar 

  20. Oesterhelt, F. et al. Unfolding pathways of individual bacteriorhodopsins. Science 288, 143?146 ( 2000).In this study of a membrane protein, the authors present an elegant example of combining force and imaging SFM.

    Article  CAS  Google Scholar 

  21. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113? 119 (1994).

    Article  CAS  Google Scholar 

  22. Thomson, N.H. et al. Protein tracking and detection of protein motion using atomic force microscopy. Biophys. J. 70, 2421? 2431 (1996).

    Article  CAS  Google Scholar 

  23. Almqvist, N. et al. Methods for fabricating and characterizing a new generation of biomimetic materials. Mater. Sci. Eng. C 7, 37?43 (1999).

    Article  Google Scholar 

  24. Viani, M. B. et al. Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. Rev. Sci. Instrum. 70, 4300?4303 (1999).

    Article  CAS  Google Scholar 

  25. Kitamura, K., Tokunaga, M., Iwane, A. H. & Yanagida, T. A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature 397, 129? 134 (1999).

    Article  CAS  Google Scholar 

  26. Kellermayer, M. S. & Granzier, H. L. Elastic properties of single titin molecules made visible through fluorescent F-actin binding . Biochem. Biophys. Res. Commun. 221, 491 ?497 (1996).

    Article  CAS  Google Scholar 

  27. Ishijima, A. et al. Multiple- and single-molecule analysis of the actomyosin motor by nanometer-piconewton manipulation with a microneedle: unitary steps and forces. Biophys. J. 70, 383? 400 (1996).

    Article  CAS  Google Scholar 

  28. Essevaz-Roulet, B., Bockelmann, U. & Heslot, F. Mechanical separation of the complementary strands of DNA. Proc. Natl Acad. Sci USA 94, 11935? 11940 (1997).

    Article  CAS  Google Scholar 

  29. Cluzel, P. et al. DNA: an extensible molecule. Science 271, 792?794 (1996).

    Article  CAS  Google Scholar 

  30. Leger, J. F., Robert, J., Bourdieu, L., Chatenay, D. & Marko, J. F. RecA binding to a single double-stranded DNA molecule: A possible role of DNA conformational fluctuations. Proc. Natl Acad. Sci. USA 95, 12295?12299 (1998).

    Article  CAS  Google Scholar 

  31. Leger, J. F. et al. Structural transitions of a twisted and stretched DNA molecule . Phys. Rev. Lett. 83, 1066? 1069 (1999).

    Article  CAS  Google Scholar 

  32. Oosawa, F. Actin?actin bond strength and the conformational change of F-actin. Biorheology 14, 11?19 ( 1977).

    Article  CAS  Google Scholar 

  33. Lorentz, H. A. Abhändlungen über Theoretische Physik (Teubner, Leipzig, 1907).

    Google Scholar 

  34. Happel, J. B., H. Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media (Prentice Hall, Englewood Cliffs, New Jersey, 1991).

    Google Scholar 

  35. Berg, H. C. Random Walks in Biology (Princeton Univ. Press, New Jersey, 1983).

    Google Scholar 

  36. Davenport, R. J., Wuite, G. J., Landick, R. & Bustamante, C. Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287, 2497? 2500 (2000).

    Article  CAS  Google Scholar 

  37. Smith, D. E., Babcock, H. P. & Chu, S. Single-polymer dynamics in steady shear flow. Science 283, 1724?1727 ( 1999).

    Article  CAS  Google Scholar 

  38. Perkins, T. T., Smith, D. E., Larson, R. G. & Chu, S. Stretching of a single tethered polymer in a uniform flow. Science 268, 83?87 (1995). This paper describes how flow fields can be used to stretch DNA and reveal new facets of single-molecule polymer rheology.

    Article  CAS  Google Scholar 

  39. Perkins, T. T., Quake, S. R., Smith, D. E. & Chu, S. Relaxation of a single DNA molecule observed by optical microscopy. Science 264, 822?826 ( 1994).

    Article  CAS  Google Scholar 

  40. Strick, T. R., Allemand, J. F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835? 1837 (1996).

    Article  CAS  Google Scholar 

  41. Strick, T. R., Croquette, V. & Bensimon, D. Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404, 901? 904 (2000).Here, to investigate the activity of individual topoisomerase molecules, magnetic force is used to twist a molecule of DNA and supercoil it.

    Article  CAS  Google Scholar 

  42. Ashkin, A., Dziedzic, J., Bjorkholm, J. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles . Optical Lett. 11, 288? 290 (1986).

    Article  CAS  Google Scholar 

  43. Gordon, J. P. Radiation forces and momenta in dielectric media. Phys. Rev. A 8, 14?21 (1973 ).

    Article  CAS  Google Scholar 

  44. Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569? 582 (1992).

    Article  CAS  Google Scholar 

  45. Wright, W. H., Sonek, G. J. & Berns, M. W. Parametric study of the forces on microspheres held by optical tweezers. Appl. Optics 33, 1735 ?1748 (1994).

    Article  CAS  Google Scholar 

  46. Chu, S. Laser manipulation of atoms and particles. Science 253, 861?866 (1991).

    Article  CAS  Google Scholar 

  47. Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795?799 (1996).

    Article  CAS  Google Scholar 

  48. Yin, H. et al. Transcription against an applied force. Science 270, 1653?1657 (1995).

    Article  CAS  Google Scholar 

  49. Kuo, S. C. & Sheetz, M. P. Force of single kinesin molecules measured with optical tweezers. Science 260, 232?234 (1993).

    Article  CAS  Google Scholar 

  50. Ashkin, A. & Dziedzic, J. M. Optical trapping and manipulation of viruses and bacteria. Science 235, 1517 ?1520 (1987).This landmark paper demonstrates the power of optical traps to manipulate microscopic objects.

    Article  CAS  Google Scholar 

  51. Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase . Science 282, 902?907 (1998).By using an optical trap, the authors reveal aspects of transcription on a single molecule level.

    Article  CAS  Google Scholar 

  52. Kellermayer, M. S., Smith, S. B., Granzier, H. L. & Bustamante, C. Folding?unfolding transitions in single titin molecules characterized with laser tweezers. Science 276, 1112? 1116 (1997); erratum 277, 1117 (1997).

    Article  CAS  Google Scholar 

  53. Tskhovrebova, L., Trinick, J., Sleep, J. A. & Simmons, R. M. Elasticity and unfolding of single molecules of the giant muscle protein titin . Nature 387, 308?312 (1997).

    Article  CAS  Google Scholar 

  54. Wong, S. S., Joselevich, E., Woolley, A. T., Cheung, C. L. & Lieber, C. M. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394, 52?55 (1998).

    Article  CAS  Google Scholar 

  55. Cheung, C. L., Hafner, J. H. & Lieber, C. M. Carbon nanotube atomic force microscopy tips: direct growth by chemical vapor deposition and application to high-resolution imaging . Proc. Natl Acad. Sci. USA 97, 3809? 3813 (2000).

    Article  CAS  Google Scholar 

  56. Kim, P. & Lieber, C. M. Nanotube nanotweezers. Science 286, 2148?2150 ( 1999).

    Article  CAS  Google Scholar 

  57. Skibbens, R. V. & Salmon, E. D. Micromanipulation of chromosomes in mitotic vertebrate tissue cells: tension controls the state of kinetochore movement. Exp. Cell Res. 235, 314?324 (1997).

    Article  CAS  Google Scholar 

  58. Roy, P., Petroll, W. M., Cavanagh, H. D., Chuong, C. J. & Jester, J. V. An in vitro force measurement assay to study the early mechanical interaction between corneal fibroblasts and collagen matrix. Exp. Cell Res. 232, 106?117 (1997).

    Article  CAS  Google Scholar 

  59. Rotsch, C., Braet, F., Wisse, E. & Radmacher, M. AFM imaging and elasticity measurements on living rat liver macrophages. Cell Biol. Int. 21, 685?696 ( 1997).

    Article  CAS  Google Scholar 

  60. Muramoto, K. et al. High-speed rotation and speed stability of the sodium-driven flagellar motor in Vibrio alginolyticus. J. Mol. Biol. 251, 50?58 (1995).

    Article  CAS  Google Scholar 

  61. Muramoto, K. et al. Rotational fluctuation of the sodium-driven flagellar motor of Vibrio alginolyticus induced by binding of inhibitors. J. Mol. Biol. 259, 687?695 (1996).

    Article  CAS  Google Scholar 

  62. Chand, A., Viani, M. B., Schaffer, T. E. & Hansma, P. K. Microfabricated small metal cantilevers with silicon tip for atomic force microscopy. J. Microelectromech. Sys. 9, 112?116 (2000).

    Article  CAS  Google Scholar 

  63. Osheroff, N., Shelton, E. R. & Brutlag, D. L. DNA topoisomerase II from Drosophila melanogaster . Relaxation of supercoiled DNA. J. Biol. Chem. 258, 9536?9543 (1983).

    CAS  Google Scholar 

  64. Fisher, T. E., Oberhauser, A. F., Carrion-Vazquez, M., Marszalek, P. E. & Fernandez, J. M. The study of protein mechanics with the atomic force microscope. Trends Biochem. Sci. 24, 379?384 (1999); erratum 25, 6 (2000).

    Article  CAS  Google Scholar 

  65. Florin, E. L., Moy, V. T. & Gaub, H. E. Adhesion forces between individual ligand?receptor pairs. Science 264, 415? 417 (1994).

    Article  CAS  Google Scholar 

  66. Lee, G. U., Chrisey, L. A. & Colton, R. J. Direct measurement of the forces between complementary strands of DNA. Science 266, 771? 773 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Smith and J. Choy for their helpful comments. This work was supported in part by grants from the NIH and the NSF (to C.B.).

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

SFM overview

SFM in depth

Microneedle research page

Movies of flow fields stretching DNA

Theory of optical tweezers

Building optical tweezers

Background of optical tweezers

Microfluidics applications

Microfluidics applications

Glossary

OPTICAL TWEEZERS

Focused photon fields.

PIEZO-ELECTRIC

Describes a device that expands or contracts as a voltage is applied to an internal crystal.

HYDRODYNAMIC FIELD

A force field resulting from the momentum imparted by molecules in a flowing aqueous solution.

PHOTON FIELD

A force field resulting from the momentum imparted by photons in a beam of light.

LAMINAR FLOW

A flow of molecules in which neighbouring molecules have linearly dependent velocities, that is, not a turbulent flow.

STOKES'S LAW

 Fdrag = 6πrη v

RADIATION PRESSURE

The pressure on an object that arises from photon collisions rather than from bombarding molecules.

NANOTECHNOLOGY

Any technological development that exceeds standard lower size limits of modern microfabrication techniques (hundreds of nanometres or less).

MICROFLUIDICS

Microscopic channels etched into a surface by modern microfabrication techniques for the purpose of transporting small amounts of solution from one place to another.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bustamante, C., Macosko, J. & Wuite, G. Grabbing the cat by the tail: manipulating molecules one by one. Nat Rev Mol Cell Biol 1, 130–136 (2000). https://doi.org/10.1038/35040072

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35040072

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing