Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

PCNA connects DNA replication to epigenetic inheritance in yeast

Abstract

Formation of a heterochromatin-like structure results in transcriptional silencing at the HM mating-type loci and telomeres in Saccharomyces cerevisiae1,2,3. Once formed, such epigenetically determined structures are inherited for many mitotic divisions4. Here we show that mutations in the proliferating cell nuclear antigen (PCNA), an essential component at the DNA replication fork5, reduced repression of genes near a telomere and at the silent mating-type locus, HMR. The pol30-8 mutant displayed coexistence of both repressed (pink) and de-repressed (white) cells within a single colony when assayed with the ADE2 gene inserted at HMR. Unlike pol30-8, the pol30-6 and pol30-79 mutants partially reduced gene silencing at telomeres and the HMR and synergistically decreased silencing in cells lacking chromatin assembly factor 1 (CAF-1). All silencing defective mutants showed reduced binding to CAF-1 in vitro and altered chromatin association of the CAF-1 large subunit in vivo. Thus, PCNA participates in inheritance of both DNA and epigenetic chromatin structures during the S phase of the cell cycle, the latter by at least two mechanisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of PCNA mutations on telomeric silencing.
Figure 2: PCNA mutants affected HMR repression.
Figure 3: Interactions between PCNA and CAF-1.
Figure 4: Chromatin association of Cac1 in wild-type PCNA or mutant strains.
Figure 5: Molecular surface of the PCNA trimer.

Similar content being viewed by others

References

  1. Loo, S. & Rine, J. Silencing and heritable domains of gene expression. Annu. Rev. Cell Dev. Biol. 11, 519–548 (1995).

    Article  CAS  Google Scholar 

  2. Grunstein, M. Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell 93, 325–328 (1998).

    Article  CAS  Google Scholar 

  3. Lustig, A. J. Mechanisms of silencing in Saccharomyces cerevisiae. Curr. Opin. Genet. Dev. 8, 233–239 (1998 ); erratum Curr. Opin. Genet. Dev. 8, 721 (1998).

    Article  Google Scholar 

  4. Pillus, L. & Rine, J. Epigenetic inheritance of transcriptional states in S. cerevisiae. Cell 59, 637–647 (1989).

    Article  CAS  Google Scholar 

  5. Waga, S. & Stillman, B. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 67, 721– 751 (1998).

    Article  CAS  Google Scholar 

  6. Verreault, A. De novo nucleosome assembly: new pieces in an old puzzle. Genes Dev. 14, 1430–1438 ( 2000).

    CAS  PubMed  Google Scholar 

  7. Shibahara, K. & Stillman, B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96, 575–585 ( 1999).

    Article  CAS  Google Scholar 

  8. Moggs, J. G. et al. A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage. Mol. Cell Biol. 20, 1206–1218 (2000).

    Article  CAS  Google Scholar 

  9. Kaufman, P. D., Kobayashi, R. & Stillman, B. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev. 11, 345– 357 (1997).

    Article  CAS  Google Scholar 

  10. Enomoto, S. & Berman, J. Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci. Genes Dev. 12, 219– 232 (1998).

    Article  CAS  Google Scholar 

  11. Henderson, D. S., Banga, S. S., Grigliatti, T. A. & Boyd, J. B. Mutagen sensitivity and suppression of position-effect variegation result from mutations in mus209, the Drosophila gene encoding PCNA. EMBO J. 13, 1450–1459 ( 1994).

    Article  CAS  Google Scholar 

  12. Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751– 762 (1990).

    Article  CAS  Google Scholar 

  13. Sussel, L., Vannier, D. & Shore, D. Epigenetic switching of transcriptional states: cis- and trans-acting factors affecting establishment of silencing at the HMR locus in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 3919–3928 (1993).

    Article  CAS  Google Scholar 

  14. Mahoney, D. J., Marquardt, R., Shei, G. J., Rose, A. B. & Broach, J. R. Mutations in the HML E silencer of Saccharomyces cerevisiae yield metastable inheritance of transcriptional repression. Genes Dev. 5, 605– 615 (1991).

    Article  CAS  Google Scholar 

  15. Liang, C. & Stillman, B. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev. 11, 3375–3386 (1997).

    Article  CAS  Google Scholar 

  16. Kaufman, P. D., Kobayashi, R., Kessler, N. & Stillman, B. The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication. Cell 81, 1105–1114 (1995).

    Article  CAS  Google Scholar 

  17. Krishna, T. S., Kong, X. P., Gary, S., Burgers, P. M. & Kuriyan, J. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79, 1233– 1243 (1994).

    Article  CAS  Google Scholar 

  18. Ayyagari, R., Impellizzeri, K. J., Yoder, B. L., Gary, S. L. & Burgers, P. M. A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair. Mol. Cell. Biol. 15, 4420 –4429 (1995).

    Article  CAS  Google Scholar 

  19. Eissenberg, J. C., Ayyagari, R., Gomes, X. V. & Burgers, P. M. Mutations in yeast proliferating cell nuclear antigen define distinct sites for interaction with DNA polymerase delta and DNA polymerase epsilon. Mol. Cell. Biol. 17, 6367–6378 (1997).

    Article  CAS  Google Scholar 

  20. Miller, A. M. & Nasmyth, K. A. Role of DNA replication in the repression of silent mating type loci in yeast. Nature 312, 247–251 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Triolo, T. & Sternglanz, R. Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature 381, 251–253 ( 1996).

    Article  ADS  CAS  Google Scholar 

  22. Chien, C. T., Buck, S., Sternglanz, R. & Shore, D. Targeting of SIR1 protein establishes transcriptional silencing at HM loci and telomeres in yeast. Cell 75, 531–541 (1993).

    Article  CAS  Google Scholar 

  23. Fox, C. A., Ehrenhofer-Murray, A. E., Loo, S. & Rine, J. The origin recognition complex, SIR1, and the S phase requirement for silencing. Science 276, 1547–1551 (1997).

    Article  CAS  Google Scholar 

  24. Murzina, N., Verreault, A., Laue, E. & Stillman, B. Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell 4, 529– 540 (1999).

    Article  CAS  Google Scholar 

  25. Le, S., Davis, C., Konopka, J. B. & Sternglanz, R. Two new S-phase-specific genes from Saccharomyces cerevisiae. Yeast 13, 1029–1042 ( 1997).

    Article  CAS  Google Scholar 

  26. Tyler, J. K. et al. The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402, 555– 560 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Verreault, A., Kaufman, P. D., Kobayashi, R. & Stillman, B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87, 95–104 ( 1996).

    Article  CAS  Google Scholar 

  28. Ehrenhofer-Murray, A. E., Kamakaka, R. T. & Rine, J. A role for the replication proteins PCNA, RF-C, polymerase epsilon and Cdc45 in transcriptional silencing in Saccharomyces cerevisiae. Genetics 153, 1171–1182 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Laman, H., Balderes, D. & Shore, D. Disturbance of normal cell cycle progression enhances the establishment of transcriptional silencing in Saccharomyces cerevisiae . Mol. Cell. Biol. 15, 3608– 3617 (1995).

    Article  CAS  Google Scholar 

  30. Scott, M. P. Development: the natural history of genes. Cell 100 , 27–40 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Burgers, P. Kaufman, R. Sternglanz and D. Shore for plasmids and yeast strains used in this study. We thank A. Stenlund for critical reading of the manuscript, T. Tully for statistical analysis of the data presented in Table 1, and members of the Stillman laboratory, especially L. Zou, for helpful discussions. This work is supported by a grant from the National Institutes of Health (to B. S.). Z. Z. is supported by a postdoctoral fellowship from the Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation. K. S. is a Leukemia Society of America Special Fellow.

Author information

Authors and Affiliations

Authors

Additional information

Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Shibahara, Ki. & Stillman, B. PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 408, 221–225 (2000). https://doi.org/10.1038/35041601

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041601

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing