Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiple reward signals in the brain

Key Points

  • This article describes how neurons detect rewards, learn to predict future rewards from past experience, and use reward information for learning, choosing, preparing and executing goal-directed behaviour. It also attempts to place the processing of drug rewards within a general framework of neuronal reward mechanisms.

  • Rewards are defined by their action on behaviour, and are crucial for the survival of the organism. They are vital in the control of homeostasis, sustain learning of new behaviours, the induction of approach behaviour and serve as goals for voluntary, intentional behaviour.

  • Various neurons detect the occurrence of rewards and reward-predicting stimuli, including those of the ascending dopamine systems, and neurons within the striatum, orbitofrontal cortex and amygdala. Some of these neurons seem to provide a reward prediction error signal that could be used for learning mechanisms, whereas others seem to be involved in the perception of individual rewards or objects that signal rewards.

  • Some neurons in the striatum and orbitofrontal cortex do not respond directly to rewards but seem to anticipate the occurrence of future rewards. Some neurons process reward information that is dependent on the relative motivational value of the reward.

  • Neurons in the striatum and different areas of frontal and parietal cortex incorporate information about expected rewards into neuronal activity involved in the production of behaviour leading to reward acquisition. They seem to code the goals of behaviour at the time the behaviour towards the goal is being prepared and executed. Some neurons are active before self-initiated, reward-directed movements and adapt their activity according to ongoing experience.

  • These studies show that different aspects of reward functions are processed by different neurons in different brain structures. The optimal use of reward information for learning and controlling behaviour requires cooperation between these neuronal reward signals.

  • The brain structures involved in the processing of natural rewards also seem to be the critical structures for the action of drugs of abuse. One may ask whether such drugs modify existing neuronal responses to natural rewards or constitute rewards in their own right, and as such engage existing neuronal reward mechanisms, directing subjects towards artificially rewarding goals.

  • This research describes the first steps towards an understanding of how rewards influence behaviour before their receipt and how the brain might use reward information to control learning and goal-directed behaviour.

Abstract

The fundamental biological importance of rewards has created an increasing interest in the neuronal processing of reward information. The suggestion that the mechanisms underlying drug addiction might involve natural reward systems has also stimulated interest. This article focuses on recent neurophysiological studies in primates that have revealed that neurons in a limited number of brain structures carry specific signals about past and future rewards. This research provides the first step towards an understanding of how rewards influence behaviour before they are received and how the brain might use reward information to control learning and goal-directed behaviour.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reward processing and the brain.
Figure 2: Primate dopamine neurons respond to rewards and reward-predicting stimuli.
Figure 3: Neuronal activity in primate striatum and orbitofrontal cortex related to the expectation of reward.
Figure 4: Behaviour-related activity in the primate caudate reflects future goals.

Similar content being viewed by others

References

  1. Fibiger, H. C. & Phillips, A. G. in Handbook of Physiology—The Nervous System Vol. IV (ed. Bloom, F. E.) 647– 675 (Williams and Wilkins, Baltimore, Maryland, 1986 ).

    Google Scholar 

  2. Wise, R. A. & Hoffman, D. C. Localization of drug reward mechanisms by intracranial injections. Synapse 10, 247–263 (1992).

    CAS  PubMed  Google Scholar 

  3. Robinson, T. E. & Berridge, K. C. The neural basis for drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247–291 (1993).

    CAS  PubMed  Google Scholar 

  4. Robbins, T. W. & Everitt, B. J. Neurobehavioural mechanisms of reward and motivation. Curr. Opin. Neurobiol. 6, 228–236 (1996)

    CAS  PubMed  Google Scholar 

  5. Louilot, A., LeMoal, M. & Simon, H. Differential reactivity of dopaminergic neurons in the nucleus accumbens in response to different behavioural situations. An in vivo voltammetric study in free moving rats. Brain Res. 397, 395–400 ( 1986).

    CAS  PubMed  Google Scholar 

  6. Church, W. H. & Justice, J. B. Jr, Neill, D. B. Detecting behaviourally relevant changes in extracellular dopamine with microdialysis. Brain Res. 41, 397–399 (1987).

    Google Scholar 

  7. Young, A. M. J., Joseph, M. H. & Gray, J. A. Increased dopamine release in vivo in nucleus accumbens and caudate nucleus of the rat during drinking: a microdialysis study. Neuroscience 48, 871– 876 (1992).

    CAS  PubMed  Google Scholar 

  8. Wilson, C., Nomikos, G. G., Collu, M. & Fibiger, H. C. Dopaminergic correlates of motivated behaviour: importance of drive. J. Neurosci. 15, 5169–5178 (1995).

    CAS  PubMed  Google Scholar 

  9. Fiorino, D. F., Coury, A. & Phillips, A. G. Dynamic changes in nucleus accumbens dopamine efflux during the Coolidge effect in male rats. J. Neurosci. 17, 4849–4855 (1997).

    CAS  PubMed  Google Scholar 

  10. Thut, G. et al. Activation of the human brain by monetary reward. NeuroReport 8, 1225–1228 (1997).

    CAS  PubMed  Google Scholar 

  11. Rogers, R. D. et al. Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. J. Neurosci. 19, 9029–9038 ( 1999)

    CAS  PubMed  Google Scholar 

  12. Elliott, R., Friston, K. J. & Dolan, R. J. Dissociable neural responses in human reward systems . J. Neurosci. 20, 6159– 6165 (2000)

    CAS  PubMed  Google Scholar 

  13. Pavlov, P. I. Conditioned Reflexes (Oxford Univ. Press, London, 1927 ).

    Google Scholar 

  14. Rescorla, R. A. & Wagner, A. R. in Classical Conditioning II: Current Research and Theory (eds Black, A. H. and Prokasy, W. F.) 64–99 (Appleton Century Crofts, New York, 1972).

    Google Scholar 

  15. Mackintosh, N. J. A theory of attention: variations in the associability of stimulus with reinforcement . Psychol. Rev. 82, 276– 298 (1975).

    Google Scholar 

  16. Pearce, J. M. & Hall, G. A model for Pavlovian conditioning: variations in the effectiveness of conditioned but not of unconditioned stimuli . Psychol. Rev. 87, 532– 552 (1980).

    CAS  Google Scholar 

  17. Schultz, W. Responses of midbrain dopamine neurons to behavioural trigger stimuli in the monkey. J. Neurophysiol. 56, 1439– 1462 (1986).

    CAS  PubMed  Google Scholar 

  18. Romo, R. & Schultz, W. Dopamine neurons of the monkey midbrain: contingencies of responses to active touch during self-initiated arm movements . J. Neurophysiol. 63, 592– 606 (1990).

    CAS  PubMed  Google Scholar 

  19. Schultz, W. & Romo, R. Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioural reactions . J. Neurophysiol. 63, 607– 624 (1990).

    CAS  PubMed  Google Scholar 

  20. Ljungberg, T., Apicella, P. & Schultz, W. Responses of monkey dopamine neurons during learning of behavioural reactions. J. Neurophysiol. 67, 145–163 (1992).

    CAS  PubMed  Google Scholar 

  21. Strecker, R. E. & Jacobs, B. L. Substantia nigra dopaminergic unit activity in behaving cats: effect of arousal on spontaneous discharge and sensory evoked activity. Brain Res. 361 , 339–350 (1985).

    CAS  PubMed  Google Scholar 

  22. Horvitz, J. C. Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96, 651– 656 (2000).

    CAS  PubMed  Google Scholar 

  23. Mirenowicz, J. & Schultz, W. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379, 449–451 ( 1996).

    CAS  PubMed  Google Scholar 

  24. Guarraci, F. A. & Kapp, B. S. An electrophysiological characterization of ventral tegmental area dopaminergic neurons during differential Pavlovian fear conditioning in the awake rabbit. Behav. Brain Res. 99, 169–179 ( 1999).

    CAS  PubMed  Google Scholar 

  25. Schultz, W. Activity of dopamine neurons in the behaving primate. Semin. Neurosci. 4, 129–138 ( 1992).

    Google Scholar 

  26. Redgrave, P., Prescott, T. J. & Gurney, K. Is the short-latency dopamine response too short to signal reward? Trends Neurosci. 22, 146– 151 (1999).

    CAS  PubMed  Google Scholar 

  27. Hollerman, J. R. & Schultz, W. Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neurosci. 1, 304–309 (1998).

    CAS  PubMed  Google Scholar 

  28. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998 ).

    CAS  PubMed  Google Scholar 

  29. Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473– 500 (2000).

    CAS  PubMed  Google Scholar 

  30. Mirenowicz, J. & Schultz, W. Importance of unpredictability for reward responses in primate dopamine neurons. J. Neurophysiol. 72, 1024–1027 (1994).

    CAS  PubMed  Google Scholar 

  31. Schultz, W., Dayan, P. & Montague, R. R. A neural substrate of prediction and reward. Science 275, 1593–1599 ( 1997).

    CAS  PubMed  Google Scholar 

  32. Montague, P. R., Dayan, P. & Sejnowski, T. J. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947 (1996).

    CAS  PubMed  Google Scholar 

  33. Sutton, R. S. & Barto, A. G. Toward a modern theory of adaptive networks: expectation and prediction. Psychol. Rev. 88, 135–170 (1981). This paper proposed a very effective 'temporal difference' reinforcement learning model that computes a prediction error over time. The teaching signal incorporates primary reinforcers and conditioned stimuli, and resembles in all aspects the response of dopamine neurons to rewards and conditioned, reward-predicting stimuli, although dopamine neurons also report novel stimuli.

    CAS  PubMed  Google Scholar 

  34. Tesauro, G. TD-Gammon, a self-teaching backgammon program, achieves master-level play . Neural Comp. 6, 215–219 (1994).

    Google Scholar 

  35. Suri, R. E. & Schultz, W. Learning of sequential movements by neural network model with dopamine-like reinforcement signal. Exp. Brain Res. 121, 350–354 (1998).

    CAS  PubMed  Google Scholar 

  36. Suri, R. & Schultz, W. A neural network with dopamine-like reinforcement signal that learns a spatial delayed response task. Neuroscience 91, 871–890 (1999).

    CAS  PubMed  Google Scholar 

  37. Schultz, W. & Romo, R. Responses of nigrostriatal dopamine neurons to high intensity somatosensory stimulation in the anesthetized monkey . J. Neurophysiol. 57, 201– 217 (1987).

    CAS  PubMed  Google Scholar 

  38. Abercrombie, E. D., Keefe, K. A., DiFrischia, D. S. & Zigmond, M. J. Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J. Neurochem. 52, 1655–1658 (1989).

    CAS  PubMed  Google Scholar 

  39. Hikosaka, O., Sakamoto, M. & Usui, S. Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. J. Neurophysiol. 61, 814–832 ( 1989).

    CAS  PubMed  Google Scholar 

  40. Apicella, P., Ljungberg, T., Scarnati, E. & Schultz, W. Responses to reward in monkey dorsal and ventral striatum. Exp. Brain Res. 85, 491–500 ( 1991).

    CAS  PubMed  Google Scholar 

  41. Apicella, P., Scarnati, E. & Schultz, W. Tonically discharging neurons of monkey striatum respond to preparatory and rewarding stimuli. Exp. Brain Res. 84, 672–675 (1991).

    CAS  PubMed  Google Scholar 

  42. Lavoie, A. M. & Mizumori, S. J. Y. Spatial-, movement- and reward-sensitive discharge by medial ventral striatum neurons of rats. Brain Res. 638, 157–168 ( 1994).

    CAS  PubMed  Google Scholar 

  43. Bowman, E. M., Aigner, T. G. & Richmond, B. J. Neural signals in the monkey ventral striatum related to motivation for juice and cocaine rewards. J. Neurophysiol. 75, 1061–1073 (1996).

    CAS  PubMed  Google Scholar 

  44. Shidara, M., Aigner, T. G. & Richmond, B. J. Neuronal signals in the monkey ventral striatum related to progress through a predictable series of trials. J. Neurosci. 18, 2613–2625 ( 1998).

    CAS  PubMed  Google Scholar 

  45. Matsumura, M., Kojima, J., Gardiner, T. W. & Hikosaka, O. Visual and oculomotor functions of monkey subthalamic nucleus. J. Neurophysiol. 67, 1615–1632 (1992).

    CAS  PubMed  Google Scholar 

  46. Schultz, W. Activity of pars reticulata neurons of monkey substantia nigra in relation to motor, sensory and complex events. J. Neurophysiol. 55, 660–677 (1986).

    CAS  PubMed  Google Scholar 

  47. Niki, H., Sakai, M. & Kubota, K. Delayed alternation performance and unit activity of the caudate head and medial orbitofrontal gyrus in the monkey. Brain Res. 38, 343–353 ( 1972).

    CAS  PubMed  Google Scholar 

  48. Niki, H. & Watanabe, M. Prefrontal and cingulate unit activity during timing behaviour in the monkey. Brain Res. 171 , 213–224 (1979).

    CAS  PubMed  Google Scholar 

  49. Rosenkilde, C. E., Bauer, R. H. & Fuster, J. M. Single cell activity in ventral prefrontal cortex of behaving monkeys. Brain Res. 209, 375 –394 (1981).

    CAS  PubMed  Google Scholar 

  50. Watanabe, M. The appropriateness of behavioural responses coded in post-trial activity of primate prefrontal units. Neurosci. Lett. 101, 113–117 (1989).

    CAS  PubMed  Google Scholar 

  51. Tremblay, L. & Schultz, W. Reward-related neuronal activity during go–no go task performance in primate orbitofrontal cortex. J. Neurophysiol. 83, 1864–1876 (2000).

    CAS  PubMed  Google Scholar 

  52. Niki, H. & Watanabe, M. Cingulate unit activity and delayed response. Brain Res. 110, 381– 386 (1976).

    CAS  PubMed  Google Scholar 

  53. Nishijo, H., Ono, T. & Nishino, H. Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance. J. Neurosci. 8, 3570–3583 ( 1988).A paper written by one of the few groups investigating neurons in the primate amygdala in relation to reward-related stimuli. They reported a number of different responses to the presentation of natural rewards.

    CAS  PubMed  Google Scholar 

  54. Nakamura, K., Mikami, A. & Kubota, K. Activity of single neurons in the monkey amygdala during performance of a visual discrimination task. J. Neurophysiol. 67, 1447–1463 (1992).

    CAS  PubMed  Google Scholar 

  55. Burton, M. J., Rolls, E. T. & Mora, F. Effects of hunger on the responses of neurons in the lateral hypothalamus to the sight and taste of food. Exp. Neurol. 51, 668–677 ( 1976).

    CAS  PubMed  Google Scholar 

  56. Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704– 708 (1999).

    CAS  PubMed  Google Scholar 

  57. Pratt, W. E. & Mizumori, S. J. Y. Characteristics of basolateral amygdala neuronal firing on a spatial memory task involving differential reward . Behav. Neurosci. 112, 554– 570 (1998).

    CAS  PubMed  Google Scholar 

  58. Thorpe, S. J., Rolls, E. T. & Maddison, S. The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp. Brain Res. 49, 93– 115 (1983).

    CAS  PubMed  Google Scholar 

  59. Rolls, E. T., Murzi, E., Yaxley, S., Thorpe, S. J. & Simpson, S. J. Sensory-specific satiety: food-specific reduction in responsiveness of ventral forebrain neurons after feeding in the monkey . Brain Res. 368, 79–86 (1986).

    CAS  PubMed  Google Scholar 

  60. Rolls, E. T., Sienkiewicz, Z. J. & Yaxley, S. Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur. J. Neurosci. 1, 53– 60 (1989).

    PubMed  Google Scholar 

  61. Rolls, E. T., Scott, T. R., Sienkiewicz, Z. J. & Yaxley, S. The responsiveness of neurons in the frontal opercular gustatory cortex of the macaque monkey is independent of hunger. J. Physiol. 397, 1–12 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Apicella, P., Legallet, E. & Trouche, E. Responses of tonically discharging neurons in the monkey striatum to primary rewards delivered during different behavioural states . Exp. Brain Res. 116, 456– 466 (1997).

    CAS  PubMed  Google Scholar 

  63. Apicella, P., Ravel, S., Sardo, P. & Legallet, E. Influence of predictive information on responses of tonically active neurons in the monkey striatum. J. Neurophysiol. 80, 3341– 3344 (1998).

    CAS  PubMed  Google Scholar 

  64. Apicella, P., Legallet, E. & Trouche, E. Responses of tonically discharging neurons in monkey striatum to visual stimuli presented under passive conditions and during task performance. Neurosci. Lett. 203, 147– 150 (1996).

    CAS  PubMed  Google Scholar 

  65. Williams, G. V., Rolls, E. T., Leonard, C. M. & Stern, C. Neuronal responses in the ventral striatum of the behaving monkey. Behav. Brain Res. 55, 243–252 (1993).

    CAS  PubMed  Google Scholar 

  66. Aosaki, T. et al. Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioural sensorimotor conditioning. J. Neurosci. 14, 3969–3984 (1994).

    CAS  PubMed  Google Scholar 

  67. Apicella, P., Scarnati, E., Ljungberg, T. & Schultz, W. Neuronal activity in monkey striatum related to the expectation of predictable environmental events. J. Neurophysiol. 68, 945–960 (1992).

    CAS  PubMed  Google Scholar 

  68. Schultz, W., Apicella, P., Scarnati, E. & Ljungberg, T. Neuronal activity in monkey ventral striatum related to the expectation of reward. J. Neurosci. 12, 4595– 4610 (1992).

    CAS  PubMed  Google Scholar 

  69. Schoenbaum, G., Chiba, A. A. & Gallagher, M. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neurosci. 1, 155–159 (1998).

    CAS  PubMed  Google Scholar 

  70. Hikosaka, K. & Watanabe, M. Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards. Cerebral Cortex 10, 263–271 (2000).

    CAS  PubMed  Google Scholar 

  71. Hollerman, J. R., Tremblay, L. & Schultz, W. Influence of reward expectation on behavior-related neuronal activity in primate striatum. J. Neurophysiol. 80, 947–963 (1998).

    CAS  PubMed  Google Scholar 

  72. Tremblay, L., Hollerman, J. R. & Schultz, W. Modifications of reward expectation-related neuronal activity during learning in primate striatum. J. Neurophysiol. 80, 964–977 ( 1998).

    CAS  PubMed  Google Scholar 

  73. Tremblay, L. & Schultz, W. Modifications of reward expectation-related neuronal activity during learning in primate orbitofrontal cortex. J. Neurophysiol. 83, 1877–1885 (2000).

    CAS  PubMed  Google Scholar 

  74. Dickinson, A. & Balleine, B. Motivational control of goal-directed action. Animal Learn. Behav. 22, 1– 18 (1994).

    Google Scholar 

  75. Okano, K. & Tanji, J. Neuronal activities in the primate motor fields of the agranular frontal cortex preceding visually triggered and self-paced movement. Exp. Brain Res. 66, 155–166 (1987).

    CAS  PubMed  Google Scholar 

  76. Romo, R. & Schultz, W. Neuronal activity preceding self-initiated or externally timed arm movements in area 6 of monkey cortex. Exp. Brain Res. 67, 656–662 (1987).

    CAS  PubMed  Google Scholar 

  77. Kurata, K. & Wise, S. P. Premotor and supplementary motor cortex in rhesus monkeys: neuronal activity during externally- and internally-instructed motor tasks. Exp. Brain Res. 72, 237– 248 (1988).

    CAS  PubMed  Google Scholar 

  78. Schultz, W. & Romo, R. Neuronal activity in the monkey striatum during the initiation of movements. Exp. Brain Res. 71, 431–436 (1988).

    CAS  PubMed  Google Scholar 

  79. Watanabe, M. Reward expectancy in primate prefrontal neurons. Nature 382, 629–632 (1996). The first demonstration that expected rewards influence the behaviour-related activity of neurons in a manner that is compatible with a goal-directed account. Neurons in primate dorsolateral prefrontal cortex show different activities depending on the expected reward during a typical prefrontal spatial delayed response task.

    CAS  PubMed  Google Scholar 

  80. Leon, M. I. & Shadlen, M. N. Effect of expected reward magnitude on the responses of neurons in the dorsolateral prefrontal cortex of the macaque . Neuron 24, 415–425 (1999).

    CAS  PubMed  Google Scholar 

  81. Kawagoe, R., Takikawa, Y. & Hikosaka, O. Expectation of reward modulates cognitive signals in the basal ganglia. Nature Neurosci. 1, 411 –416 (1998).

    CAS  PubMed  Google Scholar 

  82. Liu, Z. & Richmond, B. J. Response differences in monkey TE and perirhinal cortex: stimulus association related to reward schedules . J. Neurophysiol. 83, 1677– 1692 (2000).The first demonstration of the prominent reward relationships in neurons of temporal cortex. Neuronal responses to task stimuli in the primate perirhinal cortex were profoundly affected by the distance to reward, whereas neuronal responses in the neighbouring TE area predominantly reflected the visual features of the stimuli.

    CAS  PubMed  Google Scholar 

  83. Platt, M. L. & Glimcher, P. W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999).Neurons in primate parietal association cortex were sensitive to two key variables of game theory and decision making: the quantity and the probability of the outcomes. Based on studies of choice behaviour and decision making in human economics and animal psychology, this is the first application of principles of decision theory in primate neurophysiology.

    CAS  PubMed  Google Scholar 

  84. Shima, K. & Tanji, J. Role for cingulate motor area cells in voluntary movement selection based on reward. Science 282, 1335–1338 (1998). Neurons in the primate cingulate motor area were active when animals switched to a different movement when continuing to perform the current movement would have produced less reward. This study is interesting from the point of view of movement selection and also for the influence of rewards on behavioural choices.

    CAS  PubMed  Google Scholar 

  85. Kelley, A. E. Functional specificity of ventral striatal compartments in appetitive behaviours . Ann. NY Acad. Sci. 877, 71– 90 (1999).

    CAS  PubMed  Google Scholar 

  86. Carelli, R. M., King, V. C., Hampson, R. E. & Deadwyler, S. A. Firing patterns of nucleus accumbens neurons during cocaine self-administration . Brain Res. 626, 14–22 (1993).The first demonstration of drug-related changes in neuronal activity in one of the key structures of drug addiction, the nucleus accumbens. Two important neuronal patterns were found in the rat: activity preceding lever presses that led to acquisition of the drug and activity following drug delivery. These findings have been consistently reproduced by other goups.

    CAS  PubMed  Google Scholar 

  87. Chang, J. Y., Sawyer, S. F., Lee, R. S. & Woodward, D. J. Electrophysiological and pharmacological evidence for the role of the nucleus accumbens in cocaine self-administration in freely moving rats. J. Neurosci. 14, 1224–1244 (1994).

    CAS  PubMed  Google Scholar 

  88. Carelli, R. M. & Deadwyler, S. A. A comparison of nucleus accumbens neuronal firing patterns during cocaine self-administration and water reinforcement in rats. J. Neurosci. 14, 7735–7746 (1994).

    CAS  PubMed  Google Scholar 

  89. Chang, J. Y., Janak, P. H. & Woodward, D. J. Comparison of mesocorticolimbic neuronal responses during cocaine and heroin self-administration in freely moving rats. J. Neurosci. 18, 3098–3115 (1998).

    CAS  PubMed  Google Scholar 

  90. Carelli, R. M., Ijames, S. G. & Crumling, A. J. Evidence that separate neural circuits in the nucleus accumbens encode cocaine versus 'natural' (water and food) reward. J. Neurosci. 20, 4255–4266 (2000).

    CAS  PubMed  Google Scholar 

  91. Chang, J. Y., Paris, J. M., Sawyer, S. F., Kirillov, A. B. & Woodward, D. J. Neuronal spike activity in rat nucleus accumbens during cocaine self-administration under different fixed-ratio schedules. J. Neurosci. 74, 483– 497 (1996).

    CAS  Google Scholar 

  92. Peoples, L. L., Uzwiak, A. J., Gee, F. & West, M. O. Operant behaviour during sessions of intravenous cocaine infusion is necessary and sufficient for phasic firing of single nucleus accumbens neurons. Brain Res. 757, 280–284 ( 1997).

    CAS  PubMed  Google Scholar 

  93. West, M. O., Peoples, L. L., Michael, A. J., Chapin, J. K. & Woodward, D. J. Low-dose amphetamine elevates movement-related firing of rat striatal neurons. Brain Res. 745, 331–335 (1997).

    CAS  PubMed  Google Scholar 

  94. Peoples, L. L. & West, M. O. Phasic firing of single neurons in the rat nucleus accumbens correlated with the timing of intravenous cocaine self-administration. J. Neurosci. 16, 3459–3473 (1996).

    CAS  PubMed  Google Scholar 

  95. Peoples, L. L., Gee, F., Bibi, R. & West, M. O. Phasic firing time locked to cocaine self-infusion and locomotion: dissociable firing patterns of single nucleus accumbens neurons in the rat. J. Neurosci. 18, 7588–7598 (1998).

    CAS  PubMed  Google Scholar 

  96. Calabresi, P., Maj, R., Pisani, A., Mercuri, N. B. & Bernardi, G. Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J. Neurosci. 12, 4224–4233 (1992).

    CAS  PubMed  Google Scholar 

  97. Otmakhova, N. A. & Lisman, J. E. D1/D5 dopamine receptor activation increases the magnitude of early long-term potentiation at CA1 hippocampal synapses. J. Neurosci. 16, 7478–7486 (1996).

    CAS  PubMed  Google Scholar 

  98. Wickens, J. R., Begg, A. J. & Arbuthnott, G. W. Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex in vitro. Neuroscience 70, 1– 5 (1996).

    CAS  PubMed  Google Scholar 

  99. Calabresi, P. et al. Abnormal synaptic plasticity in the striatum of mice lacking dopamine D2 receptors. J. Neurosci. 17, 4536–4544 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The crucial contributions of the collaborators in my own cited work are gratefully acknowledged, as are the collegial interactions with Anthony Dickinson (Cambridge) and Masataka Watanabe (Tokyo). Our work was supported by the Swiss National Science Foundation, European Community, McDonnell–Pew Program, Roche Research Foundation and British Council, and by postdoctoral fellowships from the US NIMH, FRS Quebec, Fyssen Foundation and FRM Paris.

Author information

Authors and Affiliations

Authors

Related links

Related links

ENCYCLOPEDIA OF LIFE SCIENCES

Dopamine

Glossary

GOAL-DIRECTED BEHAVIOUR

Behaviour controlled by representation of a goal or an understanding of a causal relationship between behaviour and attainment of a goal.

REINFORCERS

Positive reinforcers (rewards) increase the frequency of behaviour leading to their acquisition. Negative reinforcers (punishers) decrease the frequency of behaviour leading to their encounter and increase the frequency of behaviour leading to their avoidance.

PAVLOVIAN (CLASSICAL) CONDITIONING

Learning a predictive relationship between a stimulus and a reinforcer — does not require an action by the agent.

OPERANT (INSTRUMENTAL) CONDITIONING

Learning a relationship between a stimulus, an action and a reinforcer conditional on an action by the agent.

EXTINCTION

Reduction and cessation of a predictive relationship and behaviour following the omission of a reinforcer (negative prediction error).

MOTIVATIONAL VALUE

A measure of the effort an agent is willing to expend to obtain an object signalling reward or to avoid an object signalling punishment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultz, W. Multiple reward signals in the brain. Nat Rev Neurosci 1, 199–207 (2000). https://doi.org/10.1038/35044563

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35044563

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing