Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin

Abstract

Eukaryotic replication origins are 'licensed' for replication early in the cell cycle by loading Mcm(2–7) proteins. As chromatin replicates, Mcm(2–7) are removed, thus preventing the origin from firing again. Here we report the purification of the RLF-B component of the licensing system and show that it corresponds to Cdt1. RLF-B/Cdt1 was inhibited by geminin, a protein that is degraded during late mitosis. Immunodepletion of geminin from metaphase extracts allowed them to assemble licensed replication origins. Inhibition of CDKs in metaphase stimulated origin assembly only after the depletion of geminin. These experiments suggest that geminin-mediated inhibition of RLF-B/Cdt1 is essential for repressing origin assembly late in the cell cycle of higher eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of DNA replication by geminin is mediated by inhibition of RLF-B.
Figure 2: Purification of RLF-B.
Figure 3: Recombinant Cdt1 can provide RLF-B activity.
Figure 4: RLF-B/Cdt1 can associate with geminin in interphase extracts.
Figure 5: Proteins associated with chromatin in different extracts.
Figure 6: Characterization of the licensing inhibitor in metaphase extracts.
Figure 7: Licensing of sperm nuclei in geminin-depleted metaphase extract.
Figure 8: Model for licensing control during mitosis.

Similar content being viewed by others

References

  1. Blow, J. J. & Laskey, R. A. A role for the nuclear envelope in controlling DNA replication within the cell cycle. Nature 332, 546–548 (1988).

    Article  CAS  Google Scholar 

  2. Diffley, J. F. Once and only once upon a time: specifying and regulating origins of DNA replication in eukaryotic cells. Genes Dev. 10, 2819–2830 (1996).

    Article  CAS  Google Scholar 

  3. Tada, S. & Blow, J. J. The replication licensing system. Biol. Chem. 379, 941–949 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chong, J. P. J., Mahbubani, M. H., Khoo, C.-Y. & Blow, J. J. Purification of an Mcm-containing complex as a component of the DNA replication licensing system. Nature 375, 418–421 (1995).

    Article  CAS  Google Scholar 

  5. Kubota, Y., Mimura, S., Nishimoto, S., Takisawa, H. & Nojima, H. Identification of the yeast MCM3-related protein as a component of Xenopus DNA Replication Licensing Factor. Cell 81, 601–609 (1995).

    Article  CAS  Google Scholar 

  6. Madine, M. A., Khoo, C.-Y., Mills, A. D. & Laskey, R. A. MCM3 complex required for cell cycle regulation of DNA replication in vertebrate cells. Nature 375, 421–424 (1995).

    Article  CAS  Google Scholar 

  7. Kubota, Y. et al. Licensing of DNA replication by a multi-protein complex of MCM/P1 proteins in Xenopus eggs. EMBO J. 16, 3320–3331 (1997).

    Article  CAS  Google Scholar 

  8. Thömmes, P., Kubota, Y., Takisawa, H. & Blow, J. J. The RLF-M component of the replication licensing system forms complexes containing all six MCM/P1 polypeptides. EMBO J. 16, 3312–3319 (1997).

    Article  Google Scholar 

  9. Prokhorova, T. A. & Blow, J. J. Sequential MCM/P1 subcomplex assembly is required to form a heterohexamer with replication licensing activity. J. Biol. Chem. 275, 2491–2498 (2000).

    Article  CAS  Google Scholar 

  10. Diffley, J. F., Cocker, J. H., Dowell, S. J. & Rowley, A. Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78, 303–316 (1994).

    Article  CAS  Google Scholar 

  11. Ishimi, Y. A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex. J. Biol. Chem. 272, 24508–24513 (1997).

    Article  CAS  Google Scholar 

  12. Kelman, Z., Lee, J. K. & Hurwitz, J. The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum Delta H contains DNA helicase activity. Proc. Natl Acad. Sci. USA 96, 14783–14788 (1999).

    Article  CAS  Google Scholar 

  13. Chong, J. P. J., Hayashi, M. K., Simon, M. N., Xu, R. M. & Stillman, B. A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc. Natl Acad. Sci. USA 97, 1530–1535 (2000).

    Article  CAS  Google Scholar 

  14. Labib, K., Tercero, J. A. & Diffley, J. F. X. Uninterrupted MCM2–7 function required for DNA replication fork progression. Science 288, 1643–1647 (2000).

    Article  CAS  Google Scholar 

  15. Shechter, D. F., Ying, C. Y. & Gautier, J. The intrinsic DNA helicase activity of Methanobacterium thermoautotrophicum Delta H minichromosome maintenance protein. J. Biol. Chem. 275, 15049–15059 (2000).

    Article  CAS  Google Scholar 

  16. Cocker, J. H., Piatti, S., Santocanale, C., Nasmyth, K. & Diffley, J. F. An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature 379, 180–182 (1996).

    Article  CAS  Google Scholar 

  17. Coleman, T. R., Carpenter, P. B. & Dunphy, W. G. The Xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts. Cell 87, 53–63 (1996).

    Article  CAS  Google Scholar 

  18. Rowles, A. et al. Interaction between the origin recognition complex and the replication licensing system in Xenopus. Cell 87, 287–296 (1996).

    Article  CAS  Google Scholar 

  19. Romanowski, P., Madine, M. A., Rowles, A., Blow, J. J. & Laskey, R. A. The Xenopus origin recognition complex is essential for DNA replication and MCM binding to chromatin. Curr. Biol. 6, 1416–1425 (1996).

    Article  CAS  Google Scholar 

  20. Maiorano, D., Moreau, J. & Mechali, M. XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis. Nature 404, 622–625 (2000).

    Article  CAS  Google Scholar 

  21. Nishitani, H., Lygerou, Z., Nishimoto, T. & Nurse, P. The Cdt1 protein is required to license DNA for replication in fission yeast. Nature 404, 625–628 (2000).

    Article  CAS  Google Scholar 

  22. Whittaker, A. J., Royzman, I. & Orr-Weaver, T. L. Drosophila Double parked: a conserved, essential replication protein that colocalizes with the origin recognition complex and links DNA replication with mitosis and the down-regulation of S phase transcripts. Genes Dev. 14, 1765–1776 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tada, S., Chong, J. P. J., Mahbubani, H. M. & Blow, J. J. The RLF-B component of the replication licensing system is distinct from Cdc6 and functions after Cdc6 binds to chromatin. Curr. Biol. 9, 211–214 (1999).

    Article  CAS  Google Scholar 

  24. Gillespie, P. J. & Blow, J. J. Nucleoplasmin-mediated chromatin remodelling is required for Xenopus sperm nuclei to become licensed for DNA replication. Nucleic Acids Res. 28, 472–480 (2000).

    Article  CAS  Google Scholar 

  25. Broek, D., Bartlett, R., Crawford, K. & Nurse, P. Involvement of p34cdc2 in establishing the dependency of S phase on mitosis. Nature 349, 388–393 (1991).

    Article  CAS  Google Scholar 

  26. Hayles, J., Fisher, D., Woollard, A. & Nurse, P. Temporal order of S phase and mitosis in fission yeast is determined by the state of the p34cdc2–mitotic B cyclin complex. Cell 78, 813–822 (1994).

    Article  CAS  Google Scholar 

  27. Correa-Bordes, J. & Nurse, P. p25rum1 orders S phase and mitosis by acting as an inhibitor of the p34cdc2 mitotic kinase. Cell 83, 1001–1009 (1995).

    Article  CAS  Google Scholar 

  28. Dahmann, C., Diffley, J. & Nasmyth, K. S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Curr. Biol. 5, 1257–1269 (1995).

    Article  CAS  Google Scholar 

  29. Piatti, S., Bohm, T., Cocker, J. H., Diffley, J. F. & Nasmyth, K. Activation of S-phase-promoting CDKs in late G1 defines a 'point of no return' after which Cdc6 synthesis cannot promote DNA replication in yeast. Genes Dev. 10, 1516–1531 (1996).

    Article  CAS  Google Scholar 

  30. Noton, E. & Diffley, J. F. X. CDK inactivation is the only essential function of the APC/C and the mitotic exit network proteins for origin resetting during mitosis. Mol. Cell 5, 85–95 (2000).

    Article  CAS  Google Scholar 

  31. Hennessy, K. M., Clark, C. D. & Botstein, D. Subcellular localization of yeast CDC46 varies with the cell cycle. Genes Dev. 4, 2252–2263 (1990).

    Article  CAS  Google Scholar 

  32. Labib, K., Diffley, J. F. X. & Kearsey, S. E. G1-phase and B-type cyclins exclude the DNA-replication factor Mcm4 from the nucleus. Nature Cell Biol. 1, 415–422 (1999).

    Article  CAS  Google Scholar 

  33. Nguyen, V. Q., Co, C., Irie, K. & Li, J. J. Clb/Cdc28 kinases promote nuclear export of the replication initiator proteins Mcm2–7. Curr. Biol. 10, 195–205 (2000).

    Article  CAS  Google Scholar 

  34. Drury, L. S., Perkins, G. & Diffley, J. F. X. The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast. EMBO J. 16, 5966–5976 (1997).

    Article  CAS  Google Scholar 

  35. Elsasser, S., Chi, Y., Yang, P. & Campbell, J. L. Phosphorylation controls timing of Cdc6p destruction: A biochemical analysis. Mol. Biol. Cell 10, 3263–3277 (1999).

    Article  CAS  Google Scholar 

  36. Saha, P. et al. Human CDC6/Cdc18 associates with Orc1 and cyclin-cdk and is selectively eliminated from the nucleus at the onset of S phase. Mol. Cell. Biol. 18, 2758–2767 (1998).

    Article  CAS  Google Scholar 

  37. Jiang, W., Wells, N. J. & Hunter, T. Multistep regulation of DNA replication by Cdk phosphorylation of HsCdc6. Proc. Natl Acad. Sci. USA 96, 6193–6198 (1999).

    Article  CAS  Google Scholar 

  38. Petersen, B. O., Lukas, J., Sorensen, C. S., Bartek, J. & Helin, K. Phosphorylation of mammalian CDC6 by Cyclin A/CDK2 regulates its subcellular localization. EMBO J. 18, 396–410 (1999).

    Article  CAS  Google Scholar 

  39. Sun, W. et al. The replication capacity of intact mammalian nuclei in Xenopus egg extracts declines with quiescence, but the residual DNA synthesis is independent of Xenopus MCM proteins. J. Cell Sci. 113, 683–695 (2000).

    CAS  PubMed  Google Scholar 

  40. Mahbubani, H. M., Chong, J. P., Chevalier, S., Thömmes, P. & Blow, J. J. Cell cycle regulation of the replication licensing system: involvement of a Cdk-dependent inhibitor. J. Cell Biol. 136, 125–135 (1997).

    Article  CAS  Google Scholar 

  41. McGarry, T. J. & Kirschner, M. W. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93, 1043–1053 (1998).

    Article  CAS  Google Scholar 

  42. Blow, J. J. Preventing re-replication of DNA in a single cell cycle: evidence for a replication licensing factor. J. Cell Biol. 122, 993–1002 (1993).

    Article  CAS  Google Scholar 

  43. Kubota, Y. & Takisawa, H. Determination of initiation of DNA replication before and after nuclear formation in Xenopus egg cell free extracts. J. Cell Biol. 123, 1321–1331 (1993).

    Article  CAS  Google Scholar 

  44. Hua, X. H. & Newport, J. Identification of a preinitiation step in DNA replication that is independent of origin recognition complex and cdc6, but dependent on cdk2. J. Cell Biol. 140, 271–281 (1998).

    Article  CAS  Google Scholar 

  45. Rowles, A., Tada, S. & Blow, J. J. Changes in association of the Xenopus origin recognition complex with chromatin on licensing of replication origins. J. Cell Sci. 112, 2011–2018 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Vesely, J. et al. Inhibition of cyclin-dependent kinases by purine analogs. Eur. J. Biochem. 224, 771–786 (1994).

    Article  CAS  Google Scholar 

  47. Meijer, L. et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 243, 527–536 (1997).

    Article  CAS  Google Scholar 

  48. Luca, F. C. & Ruderman, J. V. Control of programmed cyclin destruction in a cell-free system. J. Cell Biol. 109, 1895–1909 (1989).

    Article  CAS  Google Scholar 

  49. Hua, X. H., Yan, H. & Newport, J. A role for Cdk2 kinase in negatively regulating DNA replication during S phase of the cell cycle. J. Cell Biol. 137, 183–192 (1997).

    Article  CAS  Google Scholar 

  50. Chong, J. P., Thömmes, P., Rowles, A., Mahbubani, H. M. & Blow, J. J. Characterization of the Xenopus replication licensing system. Methods Enzymol. 283, 549–564 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jason Swedlow, Tom Owen-Hughes, Neil Perkins, Margret Michalski and members of the laboratory for comments on the manuscript. This work was supported by the Cancer Research Campaign (grant SP2385/1001) and by a Uehara Fellowship to S.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Julian Blow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tada, S., Li, A., Maiorano, D. et al. Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat Cell Biol 3, 107–113 (2001). https://doi.org/10.1038/35055000

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35055000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing