Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The habitat and nature of early life

Abstract

Earth is over 4,500 million years old. Massive bombardment of the planet took place for the first 500–700 million years, and the largest impacts would have been capable of sterilizing the planet. Probably until 4,000 million years ago or later, occasional impacts might have heated the ocean over 100 °C. Life on Earth dates from before about 3,800 million years ago, and is likely to have gone through one or more hot-ocean 'bottlenecks'. Only hyperthermophiles (organisms optimally living in water at 80–110 °C) would have survived. It is possible that early life diversified near hydrothermal vents, but hypotheses that life first occupied other pre-bottleneck habitats are tenable (including transfer from Mars on ejecta from impacts there). Early hyperthermophile life, probably near hydrothermal systems, may have been non-photosynthetic, and many housekeeping proteins and biochemical processes may have an original hydrothermal heritage. The development of anoxygenic and then oxygenic photosynthesis would have allowed life to escape the hydrothermal setting. By about 3,500 million years ago, most of the principal biochemical pathways that sustain the modern biosphere had evolved, and were global in scope.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Late-Archaean biosphere — the living communities and their chemical products.

Similar content being viewed by others

References

  1. Newman, J. H. Apologia Pro Vita Sua (Longmans, London, 1980).

    Google Scholar 

  2. Wetherill, G. W. Formation of the Earth. Annu. Rev. Earth Planet. Sci. 18, 205 (1990).

    ADS  Google Scholar 

  3. Ahrens, T. J. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 211–227 (Oxford Univ. Press, New York, 1990).

    Google Scholar 

  4. Lewis, J. S. & Prinn, R. G. Planets and their Atmospheres (Academic, Orlando, 1984).

    Google Scholar 

  5. Hunten, D. M. Atmospheric evolution of the terrestrial planets. Science 259, 915–920 (1993).

    ADS  CAS  Google Scholar 

  6. Watson, A. J., Donahue, T. M. & Kuhn, W. R. Temperatures in a runaway greenhouse on the evolving Venus. Earth Planet. Sci. Lett. 68, 1–6 (1984).

    ADS  Google Scholar 

  7. Bell, D. R. & Ihinger, P. D. The isotopic composition of hydrogen in nominally anhydrous mantle minerals. Geochim. Cosmochim. Acta 64, 2109–2118 (2000).

    ADS  CAS  Google Scholar 

  8. Yung, Y., Wen, J.-S., Moses, J. I., Landry, B. M. & Allen, M. Hydrogen and deuterium loss from the terrestrial atmosphere: a quantitative assessment of non-thermal escape fluxes. J. Geophys. Res. 94, 14971–14989 (1989).

    ADS  CAS  PubMed  Google Scholar 

  9. Trieloff, M., Kunz, J., Clague, D. A., Harrison, D. & Allegre, C. J. The nature of pristine noble gases in mantle plumes. Science 288, 1036–1038 (2000).

    ADS  CAS  PubMed  Google Scholar 

  10. Carr. M. Water on Mars (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  11. Halliday, A. N. Terrestrial accretion rates and the origin of the Moon. Earth Planet. Sci. Lett. 176, 17–30 (2000).

    ADS  CAS  Google Scholar 

  12. Melosh, H. J. in Origin of the Earth (eds Newsom, H. E. & Jones. J. H.) 69–83 (Oxford Univ. Press, Oxford, 1990).

    Google Scholar 

  13. Milton, J. Nature Unimpaired by Time (Latin verse, trans. W. Cowper, 1791) in The Poetical Works of William Cowper (Frederick Warne, London, New York, 1908).

    Google Scholar 

  14. Wilde, S. A. et al. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).

    ADS  CAS  PubMed  Google Scholar 

  15. Stern, R. A. & Bleeker, W. Age of the world's oldest rocks refined using Canada's SHRIMP: the Acasta Gneiss Complex, Northwest Territories, Canada. Geosci. Can. 25-1, 27–31 (1998).

    Google Scholar 

  16. Campbell, I. H. & Taylor, S. R. No water, no granites, no oceans, no continents. Geophys. Res. Lett. 10, 1061–1064 (1983).

    ADS  Google Scholar 

  17. McKay, D. S. et al. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273, 924–930 (1996).

    ADS  CAS  PubMed  Google Scholar 

  18. Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108–128 (1993).

    ADS  CAS  PubMed  Google Scholar 

  19. Lewis, C. S. Perelandra (Voyage to Venus) (John Lane the Bodley Head, London, 1943).

    Google Scholar 

  20. Zuber, M. T. et al. Internal structure and early thermal evolution of Mars from Mars global surveyor topography and gravity. Science 287, 1788–1793 (2000).

    ADS  CAS  PubMed  Google Scholar 

  21. Sleep, N. H. & Zahnle, K. Refugia from asteroid impacts on early Mars and the early Earth. J. Geophys. Res. 103, 28529–28544 (1998).

    ADS  Google Scholar 

  22. Sagan, C. & Chyba, C. The early Sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276, 1217–1221 (1997).

    ADS  CAS  PubMed  Google Scholar 

  23. Zahnle, K. Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the Earth's early atmosphere. J. Geophys. Res. 91, 2819–2834 (1986).

    ADS  CAS  Google Scholar 

  24. Pavlov, A., Kasting, J. F., Brown, L. L., Rages, K. A. & Freedman, R. Greenhouse warming by CH4 in the atmosphere of early Earth. J. Geophys. Res. 105, 11981–11990 (2000).

    ADS  CAS  PubMed  Google Scholar 

  25. Kress, M. E, Zahnle, K. & McKay, C. P. Impact production of CH4 on early Earth and Mars. EOS 81, F809 (2000).

    Google Scholar 

  26. Drake, M. J. Accretion and primary differentiation of the Earth. Geochim. Cosmochim. Acta 64, 2363–2370 (2000).

    ADS  CAS  Google Scholar 

  27. Schidlowski, M. in Instruments, Methods and Missions for Astrobiology (Proc. Soc. Photo-Opt. Instrument. Engs 3441) 149–157 (Bellingham, WA, 1998).

    Google Scholar 

  28. Nisbet, E. G. The Young Earth: An Introduction to Archaean Geology (Cambridge Univ. Press, Cambridge, 1987).

    Google Scholar 

  29. Nisbet, E. G. & Fowler, C. M. R. Some liked it hot. Nature 382, 404–405 (1996).

    ADS  CAS  Google Scholar 

  30. Nutman, A. P., Mojzsis, S. J. & Friend, C. R. L. Recognition of >3850 Ma water-lain sediments and their significance for the early Earth. Geochim. Cosmochim. Acta 61, 2475–2484 (1997).

    ADS  CAS  PubMed  Google Scholar 

  31. Schidlowski, M. A 3,800 million-year old record of life from carbon in sedimentary rocks. Nature 333, 313–318 (1988).

    ADS  CAS  Google Scholar 

  32. Schidlowski, M. & Aharon, P. in Early Organic Evolution: Implications for Mineral and Energy Resources (eds Schidlowski., M. et al.) 147–175 (Springer, Berlin, 1992).

    Google Scholar 

  33. Mojzsis, S. J. et al. Evidence for life on Earth 3800 million years ago. Nature 384, 55–59 (1996).

    ADS  CAS  PubMed  Google Scholar 

  34. Rosing, M. T. 13C-depleted carbon in >3700 Ma seafloor sedimentary rocks from West Greenland. Science 283, 674–676 (1999).

    ADS  CAS  PubMed  Google Scholar 

  35. Awramik, S. M. in Early Organic Evolution: Implications for Mineral and Energy Resources (eds Schidlowski., M. et al.) 435–439 (Springer, Berlin, 1992).

    Google Scholar 

  36. Lowe, D. R. Abiological origin of described stromatolites older than 3.2Ga. Geology 22, 387–390 (1994).

    ADS  CAS  PubMed  Google Scholar 

  37. Buick, R. Dunlop, J. S. R. & Groves, D. I. Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa 5, 161–181 (1981).

    Google Scholar 

  38. Walsh, M. M. Microfossils from the early Archean Onverwacht Group, Barberton Mountain land, South Africa. Precambrian Res. 54, 271–293 (1992).

    ADS  CAS  PubMed  Google Scholar 

  39. Schopf, J. W. & Packer, B. M. Early Archean (3.3 billion to 3.5 billion year old) microfossils from Warrawoona Group, Australia. Science 237, 70–73 (1987).

    ADS  CAS  PubMed  Google Scholar 

  40. Westall, F. de Wit, M., Dann, J., van der Gaast, S. de Ronde, C. & Gerneke, D. Early Archaean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenhouse belt, South Africa. Precambrian Res. (in the press).

  41. Rasmussen, R., Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405, 676–679 (2000).

    ADS  CAS  PubMed  Google Scholar 

  42. Nisbet, E. G. The realms of Archaean life. Nature 405, 625–626 (2000).

    CAS  PubMed  Google Scholar 

  43. Wilks, M. E. & Nisbet, E. G. Archaean stromatolites from the Steep Rock Group, N. W. Ontario, Canada. Can. J. Earth Sci. 22, 792–799 (1985).

    ADS  Google Scholar 

  44. Beukes, N. J. & Lowe, D. R. Environmental control on diverse stromatolite morphologies in the 3000 Myr Pongola Supergroup, South Africa. Sedimentology 36, 383–397 (1989).

    ADS  Google Scholar 

  45. Walter, M. R. in Earth's Earliest Biosphere (ed. Schopf, J. W.) 187–213 (Princeton Univ. Press, Princeton, 1983).

    Google Scholar 

  46. Martin, A., Nisbet, E. G. & Bickle, M. J. Archaean stromatolites of the Belingwe Greeenstone belt, Zimbabwe (Rhodesia). Precambrian Res. 13, 337–362 (1980).

    ADS  Google Scholar 

  47. Buick, R. The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science 255, 74 (1992).

    ADS  CAS  PubMed  Google Scholar 

  48. Brocks, J. J, Logan, G. A., Buick, R. & Summons, R. E. Archaean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999).

    CAS  PubMed  Google Scholar 

  49. Summons, R. E., Jahnke, L. L., Hope, J. M. & Logan, G. A. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–557 (1999).

    ADS  CAS  PubMed  Google Scholar 

  50. Grassineau, N. V. et al. Antiquity of the biological sulphur cycle: evidence from S and C isotopes in 2.7Ga rocks of the Belingwe belt, Zimbabwe. Proc. R. Soc. Lond. B 268, 113–119 (2001).

    CAS  Google Scholar 

  51. Zuckerkandl, E. & Pauling, L. Molecules as documents of evolutionary history. J. Theor. Biol. 8, 357–366 (1965).

    CAS  PubMed  Google Scholar 

  52. Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Doolittle, W. F. Uprooting the tree of life. Sci. Am. 72–77 (February 2000).

  54. Woese, C. R. The universal ancestor. Proc. Natl Acad. Sci. USA 95, 6854–6859 (1998).

    ADS  CAS  PubMed  Google Scholar 

  55. Graham, D. E., Overbeek, R., Olsen, G. J. & Woese, C. R. An archaeal genomic signature. Proc. Natl Acad. Sci. USA 97, 3304–3308 (2000).

    ADS  CAS  Google Scholar 

  56. Pace, N. R. A molecular view of biodiversity and the biosphere. Science 276, 734–740 (1997).

    CAS  PubMed  Google Scholar 

  57. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposals for the domains Archaea, Bacteria and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).

    ADS  CAS  PubMed  Google Scholar 

  58. Margulis, L. in Life: Origin and Evolution (ed. Folsome, C. E.) 101–110 (Freeman, New York, 1979). [Reprint from Sci. Am. (August 1971).]

    Google Scholar 

  59. Stetter, K. O. in Evolution of Hydrothermal Ecosystems on Earth (and Mars?) (eds Bock, G. R. & Goode, J. A.) 1–18 (CIBA Foundation Symposium 202) (Wiley, Chichester, 1996).

    Google Scholar 

  60. Galtier, N., Tourasse, N. & Gouy, M. A non-hyperthermophilic common ancestor to extant life forms. Science 283, 220–221 (1999).

    CAS  PubMed  Google Scholar 

  61. Sleep, N. H., Zahnle, K. J., Kasting, J. F. & Morowitz, H. J. Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342, 139–142 (1989).

    ADS  CAS  PubMed  Google Scholar 

  62. Sleep, N. H., Zahnle, K. & Neuhoff, P. S. Initiation of clement surface conditions on the earliest Earth. Proc. Natl Acad. Sci. USA (in the press).

  63. Gogarten-Boeckels, M., Hilario, E. & Gogarten, J. P. The effects of heavy meteorite bombardment on the early evolution—the emergence of the three domains of life. Origins Life Evol, Biosphere 25, 251–264 (1992).

    ADS  Google Scholar 

  64. Forterre, P. in Frontiers of Life (eds Tran Than Van, J., Tran Than Van, K., Mounolou, J. C., Schnieder, J. & McKay, C.) 221–233 (Gif-sur-Yvette Editions Frontieres, 1992).

    Google Scholar 

  65. Darwin, C. Some unpublished letters (1871) ed. Sir Gavin de Beer. Notes Rec. R. Soc. Lond. 14, 1 (1959).

    Google Scholar 

  66. Doolittle, W. F. At the core of the Archaea. Proc. Natl Acad. Sci. USA 93, 8797–8799 (1996).

    ADS  CAS  PubMed  Google Scholar 

  67. Knoll, A. A new molecular window on early life. Science 285, 1025–1026 (1999).

    CAS  PubMed  Google Scholar 

  68. Gilbert, W. The RNA world. Nature 319, 618 (1986).

    ADS  Google Scholar 

  69. Carter, A. P. et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibodies. Nature 407, 340–348 (2000).

    ADS  CAS  PubMed  Google Scholar 

  70. Williamson, J. R. Small subunit, big science. Nature 407, 306–307 (2000).

    CAS  PubMed  Google Scholar 

  71. Nisbet, E. G. RNA and hydrothermal systems. Nature 321, 206 (1986).

    ADS  Google Scholar 

  72. Mitchell, L., Faust, G. T., Hendricks, S. B. & Reynolds, D. S. The mineralogy and genesis of hydroxylapatite. Am. Mineral. 28, 356–371 (1943).

    CAS  Google Scholar 

  73. Nisbet, E. G. & Fowler, C. M. R. in Tectonic, Magmatic, Hydrothermal and Biological Segmentation of Mid-ocean Ridges (eds MacLeod, C. J., Tyler, P. A. & Walker, C. L.) Geol. Soc. Lond. Spec. Pub. 118, 239–251 (1996).

    Google Scholar 

  74. Kasting, J. F., Zahnle, K. J., Pinto, J. P. & Young, A. T. Sulfur, ultraviolet radiation, and the early evolution of life. Origins Life Evol. Biosphere 19, 95–108 (1989).

    ADS  CAS  Google Scholar 

  75. Bekki, S. Oxidation of volcanic SO2: a sink for stratospheric OH and H2O. Geophys. Res. Lett. 22, 913–916 (1995).

    ADS  CAS  Google Scholar 

  76. Jacob, F. in Evolution from Molecules to Men (ed. Bendall, D. S.) 31–67 (Cambridge Univ. Press, Cambridge, 1983).

    Google Scholar 

  77. DeLong, E. F. Resolving a methane mystery. Nature 407, 577–579 (2000).

    CAS  PubMed  Google Scholar 

  78. Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

    ADS  CAS  PubMed  Google Scholar 

  79. Pierson, B. K. in Early Life on Earth (ed. Bengtson, S.) 161–180 (Nobel Symposium 84) (Columbia Univ. Press, New York, 1994).

    Google Scholar 

  80. Blankenship, R. E. Origin and early evolution of photosynthesis. Photosyn. Res. 33, 91–111 (1992).

    CAS  PubMed  Google Scholar 

  81. Blankenship, R. E. & Hartman, H. The origin and evolution of oxygenic photosynthesis. Trends Biochem. Sci. 23, 94–97 (1998).

    CAS  PubMed  Google Scholar 

  82. Nisbet, E. G., Cann, J. R. & van Dover, C. L. Origins of photosynthesis. Nature 373, 479–480 (1995).

    ADS  CAS  Google Scholar 

  83. Xiong, Fischer, W. M., Inoue, K. Nakahara & Bauer, C. E. Molecular evidence for the early evolution of photosynthesis. Science, 289, 1724–1730 (2000).

    ADS  CAS  PubMed  Google Scholar 

  84. Pringault, O., Kuhl, M., de Wit, R. & Caumette, P. Growth of green sulphur bacteria in experimental benthic oxygen, sulphide, pH and light gradients. Microbiology 144, 1051–1061 (1998).

    CAS  Google Scholar 

  85. Cohen, Y., Jorgensen, B. B., Padan, E. & Shilo, M. Sulphide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257, 489–492 (1975).

    ADS  CAS  Google Scholar 

  86. Nisbet, E. G. & Fowler, C. M. R. Archaean metabolic evolution of microbial mats. Proc. R. Soc. Lond. B 266, 2375–2382 (1999).

    Google Scholar 

  87. Lorimer, G. H. The carboxylation and oxygenation of ribulose 1,5-bisphosphate: the primary events in photosynthesis and photorespiration. Annu. Rev. Plant Physiol. 32, 349–383 (1981).

    CAS  Google Scholar 

  88. Lorimer, G. H. & Andrews, T. J. Plant photorespiration—an inevitable consequence of the existence of atmospheric oxygen. Nature 243, 359 (1973).

    ADS  CAS  Google Scholar 

  89. Gray, M. W., Burger, G. & Lang, B. F. Mitochondrial evolution. Science 283, 1476–1481 (1999).

    ADS  CAS  Google Scholar 

  90. Martin, W. & Muller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).

    ADS  CAS  Google Scholar 

  91. Vellai, T. & Vida, G. The origin of eukaryotes: the difference between eukaryotic and prokaryotic cells. Proc. R. Soc. Lond. B 266, 1571–1577 (1999).

    CAS  Google Scholar 

  92. Stiller, J. W. & Hall, B. D. The origin of red algae: implications for plastid evolution. Proc. Natl Acad. Sci. USA 94, 4520–4525 (1997).

    ADS  CAS  PubMed  Google Scholar 

  93. Ohmoto, H. When did the Earth's atmosphere become oxic? Geochem. News 93,12–13 (1997).

    Google Scholar 

  94. Holland, H. D. When did the Earth's atmosphere become oxic? A reply. Geochem. News 100, 20–22 (1999).

    Google Scholar 

  95. Buick, R. & Dunlop, J. S. R. Evaporitic sediments of early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology 37, 247–277 (1990).

    ADS  Google Scholar 

  96. Barley, M. E. Volcanic, sedimentary and tectonostratigraphic environments of the 3.46 Ga Warrawoona megasequence: a review. Precambrian Res. 60, 47–67 (1993).

    ADS  CAS  Google Scholar 

  97. Rasmussen, R., & Buick, R. Oily old ores, evidence for hydrothermal petroleum generation in an Archean volcanogenic massive sulphide deposit. Geology 27, 115–118 (2000).

    ADS  Google Scholar 

  98. Kasting, J. F. Earth's early atmosphere. Science 259, 920–925 (1993).

    ADS  CAS  Google Scholar 

  99. Sleep, N. H. & Zahnle, K. Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res. 106 (in the press).

  100. Joshi, H. M. & Tabita, F. R. A global two-way component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation and nitrogen fixation. Proc. Natl Acad. Sci. USA 93, 14515–14520 (1996).

    ADS  CAS  PubMed  Google Scholar 

  101. Tolbert, N. E. in Regulation of Atmospheric CO2 and O2 by Photosynthetic Carbon Metabolism (eds Tolbert, N. E. & Preiss, J.) 8–33 (Oxford Univ. Press, Oxford, 1994).

    Google Scholar 

  102. Hayes, J. M in Early Life on Earth (ed. Bengtson, S.) 220 (Nobel Symposium 84) (Columbia Univ. Press, New York, 1994).

    Google Scholar 

  103. Habicht, K. S. & Canfield, D. E. Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycle. Nature 382, 342–343 (1996).

    ADS  CAS  Google Scholar 

  104. Canfield, D. E. & Teske, A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382, 127–132 (1996).

    ADS  CAS  PubMed  Google Scholar 

  105. Canfield, D. E., Habicht, K. S. & Thamdrup, B. The Archaean sulfur cycle and the early history of atmospheric oxygen. Science 288, 658–661 (2000).

    ADS  CAS  PubMed  Google Scholar 

  106. Wolery. T. J. & Sleep, N. H. in Chemical Cycles in the Evolution of the Earth (eds Gregor, C. B., Garrels, R. M., MacKenzie, F. T. & Maynard, J. B.) Vol. 3, 76–103 (Wiley, New York, 1988).

    Google Scholar 

  107. Cas, R. A. F. Submarine volcanism: eruption styles, products, and relevance to understanding the host-rock successions to volcanic-hosted massive sulphide deposits. Econ. Geol. 87, 511–541 (1992).

    CAS  Google Scholar 

  108. Smith, J. V., Arnold, F. P., Parsons, I. & Lee, M. R. Biochemical evolution III: polymerisation on organophilic silica-rich surfaces, crystal-chemical modelling, formation of first cells, and geological clues. Proc. Natl Acad. Sci. USA 96, 3479–3485 (1999).

    ADS  CAS  PubMed  Google Scholar 

  109. Schidlowski, M. Early atmospheric oxygen levels: constraints from Archaean photoautotrophy. J. Geol. Soc. Lond. 141, 243–250 (1984).

    CAS  Google Scholar 

  110. Des Marais, D. J. Tectonic control of the crustal organic carbon reservoir during the Precambrian. Chem. Geol. 114, 303–314 (1994).

    ADS  CAS  PubMed  Google Scholar 

  111. Lovelock, J. E. Ages of Gaia (Norton, London, 1988).

    Google Scholar 

  112. Walker, J. C. G. & Drever, J. I. in Chemical Cycles in the Evolution of the Earth (eds Gregor, C. B., Garrels, R. M., MacKenzie, F. T. & Maynard, J. B.) Vol. 2, 55–75 (Wiley, New York, 1988).

    Google Scholar 

  113. Nisbet, E. G. in Early Precambrian Processes (eds Coward, M. P. & Ries, A. C.) Geol. Soc. Lond. Spec. Pub. 95, 27–51 (1995).

    Google Scholar 

  114. Walker, J. C. G. Was the Archaean biosphere upside down? Nature 329, 710–712 (1987).

    ADS  CAS  PubMed  Google Scholar 

  115. Catling, D. C., McKay, C. P. & Zahnle, K. J. The role of biogenic methane in the oxidation state of early Earth. EOS 81, F809 (2000).

    Google Scholar 

Download references

Acknowledgements

We thank many colleagues for comment (and some helpful disagreement), including W. Bleeker, J. Bowyer, R. Buick, N. Butterfield, D. Catling, F. Dyson, M. Fowler, N. Grassineau, B. Pierson, M. Schidlowski, C. Tickell and K. Zahnle. The work was supported by the Leverhulme Trust and NERC. EGN's contribution derives from a Macgregor Memorial Lecture sponsored by the Geological Society of Zimbabwe.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nisbet, E., Sleep, N. The habitat and nature of early life. Nature 409, 1083–1091 (2001). https://doi.org/10.1038/35059210

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35059210

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing