Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Meiotic recombination hot spots and cold spots

Key Points

  • Eukaryotic chromosomes have regions of high (hot spots)and low (cold spots) meiotic recombination. These distortions of the genetic maps complicate gene identification by positional cloning strategies.

  • Meiotic recombination in yeast (and probably other eukaryotes) is initiated by meiosis-specific double-stranded DNA breaks (DSBs).

  • In yeast, DSBs occur preferentially in regions of 'open' chromatin, and some hot spots require the binding of transcription factors, but not high levels of transcription. Hot spots are clustered in high G + C domains that often contain more than one preferred site for DSB formation. Telomeric and centromeric regions often have low levels of meiotic exchange.

  • In humans, regions of elevated recombination have been observed on several chromosomes. The location and strength of these 'hot' regions is often different in males and females. Several human hot spots have been mapped to kilobase resolution using linkage disequilibrium and sperm typing.

  • Covalent modification of histones affects gene expression, DNA replication and chromosome condensation. Various experimental observations indicate that these modifications might also influence the distribution of meiotic recombination events.

Abstract

Meiotic recombination events are distributed unevenly throughout eukaryotic genomes. This inhomogeneity leads to distortions of genetic maps that can hinder the ability of geneticists to identify genes by map-based techniques. Various lines of evidence, particularly from studies of yeast, indicate that the distribution of recombination events might reflect, at least in part, global features of chromosome structure, such as the distribution of modified nucleosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Double-stranded-break-repair model of recombination.
Figure 2: Global regulation of hot-spot activity.
Figure 3: Genetic mapping in the human genome.
Figure 4: Three types of recombination hot spot.
Figure 5: Hot-spot activity in a model chromosome.

Similar content being viewed by others

References

  1. Lichten, M. & Goldman, A. S. H. Meiotic recombination hotspots . Annu. Rev. Genet. 29, 423– 444 (1995).This review lucidly summarizes information derived from studies of hot spots in a large variety of organisms.

    CAS  PubMed  Google Scholar 

  2. Wahls, W. P. Meiotic recombination hot spots: shaping the genome and insights into hypervariable minisatellite DNA change. Curr. Top. Dev. Biol. 37, 37–75 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Petes, T. D., Malone, R. E. & Symington, L. S. in The Molecular and Cellular Biology of the Yeast Saccharomyces Vol. 1 (eds Broach, J. R., Jones, E. W. & Pringle, J. R.) 407–521 (Cold Spring Harbor Laboratory Press, New York, 1991).

    Google Scholar 

  4. Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely-conserved protein family. Cell 88, 375–384 (1997).

    CAS  PubMed  Google Scholar 

  5. Bergerat, A. et al. An atypical topoisomerase II from archaea with implication for meiotic recombination. Nature 386, 414 –417 (1997).References 4 and 5 describe the evidence that Spo11 — a topoisomerase-related protein — is responsible for double-stranded break formation in yeast.

    CAS  PubMed  Google Scholar 

  6. Roeder, G. S. Meiotic chromosomes: it takes two to tango. Genes Dev. 11, 2600–2621 (1997).

    CAS  PubMed  Google Scholar 

  7. Sun, H., Treco, D. & Szostak, J. W. Extensive 3′-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination intiation site. Cell 64, 1155 –1161 (1991).

    CAS  PubMed  Google Scholar 

  8. Cao, L., Alani, E. & Kleckner, N. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61, 1089–1101 ( 1990).

    CAS  PubMed  Google Scholar 

  9. Sun, H., Treco, D., Schultes, N. P. & Szostak, J. W. Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338, 87–90 ( 1989).This study showed that double-stranded breaks are the DNA lesions that initiate meiotic recombination in yeast.

    CAS  PubMed  Google Scholar 

  10. de Massy, B. & Nicolas, A. The control in cis of the position and amount of the ARG4 meiotic double-strand break of Saccharomyces cerevisiae. EMBO J. 12, 1459–1466 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fan, Q.-Q., Xu, F. & Petes, T. D. Meiosis-specific double-strand DNA breaks at the HIS4 recombination hot spot in the yeast Saccharomyces cerevisiae: control in cis and trans. Mol. Cell. Biol. 15, 1679–1688 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu, T.-C. & Lichten, M. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263, 515–518 (1994). This analysis showed that double-stranded breaks occur in nuclease-sensitive regions of chromatin.

    CAS  PubMed  Google Scholar 

  13. Baudat, F. & Nicolas, A. Clustering of meiotic double-strand breaks on yeast chromosome III. Proc. Natl Acad. Sci. USA 94, 5213–5218 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gerton, J. L. et al. Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 97, 11383–11390 (2000).A microarray-based study that describes mapping of double-stranded breaks throughout the yeast genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nicolas, A., Treco, D., Schultes, N. P. & Szostak, J. W. An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature 338, 35– 39 (1989).

    CAS  PubMed  Google Scholar 

  16. Detloff, P., White, M. A. & Petes, T. D. Analysis of a gene conversion gradient at the HIS4 locus in Saccharomyces cerevisiae. Genetics 132, 113–123 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J. & Stahl, F. W. The double-strand-break-repair model for recombination. Cell 33, 25–35 (1983).

    CAS  PubMed  Google Scholar 

  18. Nicolas, A. & Petes, T. D. Polarity of gene conversion in fungi: contrasting views. Experientia 50, 242–252 (1994).

    CAS  PubMed  Google Scholar 

  19. Szankasi, P., Heyer, W. D., Schuchert, P. & Kohli, J. DNA sequence analysis of the ade6 gene of Schizosaccharomyces pombe : wild-type and mutant alleles including the recombination hot spot allele ade6-M26. J. Mol. Biol. 204, 917– 925 (1988).

    CAS  PubMed  Google Scholar 

  20. Liu, J., Wu, T.-C. & Lichten, M. The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA–protein intermediate. EMBO J. 14, 4599– 4608 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu, L. & Kleckner, N. Sequence non-specific double-strand breaks and interhomology interactions prior to double-strand break formation at a meiotic recombination hotspot in yeast. EMBO J. 14, 5115–5128 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. de Massy, B., Rocco, V. & Nicolas, A. The nucleotide mapping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination in Saccharomyces cerevisiae. EMBO J. 14, 4589– 4598 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu, F. & Petes, T. D. Fine-structure mapping of meiosis-specific double-strand DNA breaks at a recombination hotspot associated with an insertion of telomeric sequences upstream of the HIS4 locus in yeast. Genetics 143, 1115–1125 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Blumenthal-Perry, A., Zenvirth, D., Klein, S., Onn, I. & Simchen, G. DNA motif associated with meiotic double-strand break regions in Saccharomyces cerevisiae. EMBO Rep. 1, 232–238 (2000).

    Google Scholar 

  25. Cervantes, M. D., Farah, J. A. & Smith, G. R. Meiotic DNA breaks associated with recombination in S. pombe. Mol. Cell 5, 883– 888 (2000).

    CAS  PubMed  Google Scholar 

  26. Zenvirth, D. & Simchen, G. Meiotic double-strand breaks in Schizosaccharomyces pombe. Curr. Genet. 38, 33–38 (2000).

    CAS  PubMed  Google Scholar 

  27. Ohta, K., Shibata, T. & Nicolas, A. Changes in chromatin structure at recombination initiation sites during yeast meiosis. EMBO J. 13, 5754–5763 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan, Q.-Q. & Petes, T. D. Relationship between nuclease-hypersensitive sites and meiotic recombination hot spot activity at the HIS4 locus of Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2037–2043 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Keeney, S. & Kleckner, N. Communication between homologous chromosomes: genetic alterations at a nuclease-hypersensitive site can alter meiotic chromatin structure at that site both in cis and in trans . Genes Cells 1, 475– 489 (1996).

    CAS  PubMed  Google Scholar 

  30. Mizuno, K. -i. et al. The meiotic recombination hotspot created by the single-base substitution ade6-M26 results in remodeling of chromatin structure in fission yeast. Genes Dev. 11, 876– 886 (1997).

    CAS  PubMed  Google Scholar 

  31. Borde, V., Goldman, A. S. H. & Lichten, M. Direct coupling between meiotic DNA replication and recombination initiation. Science 290, 806 –809 (2000).

    CAS  PubMed  Google Scholar 

  32. Smith, K. N., Penkner, A., Ohta, K., Klein, F. & Nicolas, A. B-type cyclins CLB5 and CLB6 control the initiation of recombination and synaptonemal complex formation in yeast meiosis . Curr. Biol. 11, 88–97 (2001).

    CAS  PubMed  Google Scholar 

  33. Arndt, K. T., Styles, C. & Fink, G. R. Multiple global regulators control HIS4 transcription in yeast. Science 237, 874– 880 (1987).

    CAS  PubMed  Google Scholar 

  34. Tice-Baldwin, K., Fink, G. R. & Arndt, K. T. BAS1 has a Myb motif and activates HIS4 transcription only in combination with BAS2. Science 246, 931–935 (1989).

    CAS  PubMed  Google Scholar 

  35. Devlin, C., Tice-Baldwin, K., Shore, D. & Arndt, K. T. RAP1 is required for BAS1/BAS2- and GCN4-dependent transcription of the yeast HIS4 gene. Mol. Cell. Biol. 11, 3642 –3651 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. White, M. A., Wierdl, M., Detloff, P. & Petes, T. D. DNA-binding protein RAP1 stimulates meiotic recombination at the HIS4 locus in yeast. Proc. Natl Acad. Sci. USA 88, 9755– 9759 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. White, M. A., Dominska, M. & Petes, T. D. Transcription factors are required for the meiotic recombination hotspot at the HIS4 locus in Saccharomyces cerevisiae . Proc. Natl Acad. Sci. USA 90, 6621 –6625 (1993).This reference describes evidence for α-hot spots — recombination hot spots that require transcription-factor binding.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. White, M. A., Detloff, P., Strand, M. & Petes, T. D. A promoter deletion reduces the rate of mitotic, but not meiotic, recombination at the HIS4 locus in yeast. Curr. Genet. 21, 109 –116 (1992).

    CAS  PubMed  Google Scholar 

  39. Kirkpatrick, D. T., Fan, Q.-Q. & Petes, T. D. Maximal stimulation of meiotic recombination by a yeast transcription factor requires the transcription activation domain and a DNA binding domain. Genetics 152, 101– 115 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kon, N., Krawchuk, M. D., Warren, B. G., Smith, G. R. & Wahls, W. P. Transcription factor Mts1/Mts2 (Atf1/Pcr1, Gad7/Pcr1) activates the M26 meiotic recombination hotspot in Schizosaccharomyces pombe. Proc. Natl Acad. Sci. USA 94, 13765–13770 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Grimm, C., Schaer, P., Munz, P. & Kohli, J. The strong ADH1 promoter stimulates mitotic and meiotic recombination at the ADE6 gene of Schizosaccharomyces pombe. Mol. Cell. Biol. 11, 289–298 ( 1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kirkpatrick, D. T., Wang, Y.-H., Dominska, M., Griffith, J. D. & Petes, T. D. Control of meiotic recombination and gene expression in yeast by a simple repetitive DNA sequence that excludes nucleosomes. Mol. Cell. Biol. 19, 7661– 7671 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, Y.-H. & Griffith, J. D. The [(G/C)3NN]n motif: a common DNA repeat that excludes nucleosomes. Proc. Natl Acad. Sci. USA 93, 8863–8867 ( 1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu, T.-C. & Lichten, M. Factors that affect the location and frequency of meiosis-induced double-strand breaks in Saccharomyces cerevisiae. Genetics 140, 55– 66 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Virgin, J. B., Metzger, J. & Smith, G. R. Active and inactive transplacement of the M26 recombination hotspot in Schizosaccharomyces pombe. Genetics 141, 33–48 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fan, Q.-Q., Xu, F., White, M. A. & Petes, T. D. Competition between adjacent meiotic recombination hotspots in the yeast Saccharomyces cerevisiae . Genetics 145, 661– 670 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zahn-Zabal, M., Lehmann, E. & Kohli, J. Hot spots of recombination in fission yeast: inactivation of the M26 hot spot by deletion of the ade6 promoter and the novel hotspot ura3-aim. Genetics 140, 469–478 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ohta, K., Wu, T.-C., Lichten, M. & Shibata, T. Competitive inactivation of a double-strand DNA break site involves parallel suppression of meiosis-induced changes in chromatin configuration. Nucleic Acids Res. 27, 2175–2180 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rocco, V. & Nicolas, A. Sensing of DNA non-homology lowers the initiation of meiotic recombination in yeast. Genes Cells 1, 645–661 (1996).

    CAS  PubMed  Google Scholar 

  50. Zenvirth, D. et al. Multiple sites for double-strand breaks in whole meiotic chromosomes of Saccharomyces cerevisiae. EMBO J. 11, 3441–3447 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Klein, S. et al. Patterns of meiotic double-strand breakage on native and artificial yeast chromosomes. Chromosoma 105, 276– 284 (1996).

    CAS  PubMed  Google Scholar 

  52. Blat, Y. & Kleckner, N. Cohesins bind to preferential sites along yeast chromosome III with differential regulation along arms versus the centric region. Cell 98, 249– 259 (1999).

    CAS  PubMed  Google Scholar 

  53. Lambie, E. J. & Roeder, G. S. A yeast centromere acts in cis to inhibit meiotic gene conversion of adjacent sequences. Cell 52, 863–873 ( 1988).

    CAS  PubMed  Google Scholar 

  54. Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751– 762 (1990).

    CAS  PubMed  Google Scholar 

  55. Egel, R. Two tightly-linked silent cassettes in the mating-type region of Schizosaccharomyces pombe. Curr. Genet. 8, 199– 203 (1984).

    CAS  PubMed  Google Scholar 

  56. Thon, G., Cohen, A. & Klar, A. J. S. Three additional linkage groups that repress transcription and meiotic recombination in the mating-type region of Schizosaccharomyces pombe. Genetics 138, 29– 38 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120 –124 (2001).In this reference, and in references 92 and 93 , evidence that links the silencing of gene expression and methylation of histones is described.

    CAS  PubMed  Google Scholar 

  58. Borde, V., Wu, T.-C. & Lichten, M. Use of a recombination reporter insert to define meiotic recombination domains on chromosome III of Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 4832–4842 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Broman, K. W., Murray, J. C., Sheffield, V. C., White, R. L. & Weber, J. L. Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am. J. Hum. Genet. 63, 861–869 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Loidl, J., Scherthan, H., Den Dunnen, J. T. & Klein, F. Morphology of a human-derived YAC in yeast meiosis. Chromosoma 104, 183–188 ( 1995).

    CAS  PubMed  Google Scholar 

  61. Lindahl, K. His and hers recombinational hotspots. Trends Genet. 7, 273–276 (1991).

    CAS  PubMed  Google Scholar 

  62. Dunham, I. et al. The DNA sequence of human chromosome 22. Nature 402, 489–495 ( 1999).

    CAS  PubMed  Google Scholar 

  63. Yu, A. et al. Comparison of human genetic and sequence-based physical maps. Nature 409, 951–953 ( 2001).In references 59 and 63 , the characteristics of human linkage maps are described.

    CAS  PubMed  Google Scholar 

  64. Hedrick, P. W. Inference of recombination hotspots using gametic disequilibrium values. Heredity 60, 435–438 ( 1988).

    PubMed  Google Scholar 

  65. Cullen, M. et al. Characterization of recombination in the HLA class II region . Am. J. Hum. Genet. 60, 397– 407 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Jeffreys, A., Ritchie, A. & Neumann, R. High resolution analysis of haplotype diversity and meiotic crossover in the human TAP2 recombination hotspot. Hum. Mol. Genet. 9, 725–733 (2000).This study examines a single human meiotic recombination hot spot at high resolution using linkage disequilibrium and sperm genotyping.

    CAS  PubMed  Google Scholar 

  67. Hubert, R., MacDonald, M., Gusella, J. & Arnheim, N. High resolution localization of recombination hot spots using sperm typing . Nature Genet. 7, 420– 424 (1994).

    CAS  PubMed  Google Scholar 

  68. Shenkar, R., Shen, M. & Arnheim, N. DNase I-hypersensitive sites and transcription factor-binding motifs within the mouse Eβ meiotic recombination hot spot. Mol. Cell. Biol. 11, 1813–1819 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jeffreys, A., Murray, J. & Neumann, R. High-resolution mapping of crossovers in human sperm defines a minisatellite-associated recombination hotspot. Mol. Cell 2, 267–273 ( 1998).

    CAS  PubMed  Google Scholar 

  70. Reiter, L. T. et al. A recombination hotspot responsible for two inherited peripheral neuropathies is located near a mariner transposon-like element. Nature Genet. 12, 288–297 (1996).

    CAS  PubMed  Google Scholar 

  71. Lopes, J. et al. Fine mapping of de novo CMT1A and HNPP rearrangements within CMT1A-REPs evidences two distinct sex-dependent mechanisms and candidate sequences involved in recombination. Hum. Mol. Genet. 7, 141–148 (1998).

    CAS  PubMed  Google Scholar 

  72. Jeffreys, A., Neil, D. L. & Neumann, R. Repeat instability at human minisatellites arising from meiotic recombination. EMBO J. 17, 4147– 4157 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Buard, J. & Vergnaud, G. Complex recombination events at the hypermutable minisatellite CEB1 (D2S90). EMBO J. 13, 3203–3210 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Armour, J. A. L., Harris, P. C. & Jeffreys, A. J. Allelic variation at minisatellite MS205 (D16S309): evidence for polarized variability. Hum. Mol. Genet. 2, 1137–1145 (1993).

    CAS  PubMed  Google Scholar 

  75. Treco, D. & Arnheim, N. The evolutionarily conserved repetitive sequence d(TG.AC)n promotes reciprocal exchange and generates unusual recombinant tetrads during yeast meiosis. Mol. Cell. Biol. 6, 3934–3947 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gendrel, C. G., Boulet, A. & Dutreix, M. (CA/GT)(n) microsatellites affect homologous recombination during yeast meiosis. Genes Dev. 14, 1261 –1268.

  77. Majewski, J. & Ott, J. GT repeats associated with recombination on human chromosome 22. Genome Res. 10, 1108–1114 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Eisenbarth, I., Vogel, G., Krone, W., Vogel, W. & Assum, G. An isochore transition in the NF1 gene region coincides with a switch in the extent of linkage disequilibrium. Am. J. Hum. Genet. 67, 873–880 ( 2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Keeney, S. et al. A mouse homolog of the Saccharomyces cerevisiae meiotic recombination DNA transesterase Spo11p. Genomics 61 , 170–182 (1999).

    CAS  PubMed  Google Scholar 

  80. Metzler-Guillemain, C. & de Massy, B. Identification and characterization of a SPO11 homolog in the mouse. Chromosoma 109, 133–138 ( 2000).

    CAS  PubMed  Google Scholar 

  81. Romanienko, P. J. & Camerini-Otero, R. D. Cloning, characterization and localization of mouse and human SPO11. Genomics 61, 156–169 ( 1999).

    CAS  PubMed  Google Scholar 

  82. Baudat, F., Manova, K., Yuen, J. P., Jasin, M. & Keeney, S. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol. Cell 6 , 989–998 (2000).

    CAS  PubMed  Google Scholar 

  83. Romanienko, P. J. & Camerini-Otero, R. D. The mouse spo11 gene is required for meiotic chromosome synapsis. Mol. Cell 6, 975–987 ( 2000).

    CAS  PubMed  Google Scholar 

  84. Workman, J. L. & Kingston, R. E. Alteration of nucleosome structure as a mechanism of transcriptional activation. Annu. Rev. Biochem. 67, 545–579 (1998).

    CAS  PubMed  Google Scholar 

  85. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 ( 1997).

    CAS  PubMed  Google Scholar 

  86. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41– 45 (2000).A review that discusses how different histone modifications result in different biological 'read-outs'.

    CAS  PubMed  Google Scholar 

  87. Cheung, P., Allis, C. D. & Sassone-Corsi, P. Signaling to chromatin through histone modifications . Cell 103, 263–271 (2000).

    CAS  PubMed  Google Scholar 

  88. Struhl, K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606 ( 1998).

    CAS  PubMed  Google Scholar 

  89. Braunstein, M., Sobel, R. E., Allis, C. D., Turner, B. M. & Broach, J. R. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell. Biol. 16, 4349– 4356 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain . Nature 399, 491–496 (1999).

    CAS  PubMed  Google Scholar 

  91. Chen, D. et al. Regulation of transcription by a protein methyltransferase. Science 284, 2174–2177 ( 1999).

    CAS  PubMed  Google Scholar 

  92. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases . Nature 406, 593–599 (2000).

    CAS  PubMed  Google Scholar 

  93. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116– 120 (2001).

    CAS  PubMed  Google Scholar 

  94. Mahadevan, L. C., Willis, A. C. & Barratt, M. J. Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65, 775–783 ( 1991).

    CAS  PubMed  Google Scholar 

  95. Koshland, D. & Strunnikov, A. Mitotic chromosome condensation . Annu. Rev. Cell Dev. Biol. 12, 305– 333 (1996).

    CAS  PubMed  Google Scholar 

  96. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858– 5868 (1998).

    CAS  PubMed  Google Scholar 

  97. Downs, J. D., Lowndes, N. & Jackson, S. P. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408, 1001– 1004 (2000).

    CAS  PubMed  Google Scholar 

  98. Robzyk, K., Recht, J. & Osley, M. A. Rad6-dependent ubiquitination of histone H2B in yeast . Science 287, 501–504 (2000).

    CAS  PubMed  Google Scholar 

  99. Cheung, P. et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5, 905–915 (2000).

    CAS  PubMed  Google Scholar 

  100. Iyer, V. & Struhl, K. Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J. 14, 2570–2579 ( 1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Paciotti, V., Clerici, M., Lucchini, G. & Longhese, M. P. The checkpoint protein Ddc2, functionally related to S. pombe Rad26, interacts with Mec1 and is regulated by Mec1-dependent phosphorylation in budding yeast. Genes Dev. 14, 2046– 2059 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Mallory, J. C. & Petes, T. D. Protein kinase activity of Tel1p and Mec1p, two Saccharomyces cerevisiae proteins related to the human ATM protein kinase. Proc. Natl Acad. Sci. USA 97, 13749–13754 ( 2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Weinert, T. A., Kiser, G. L. & Hartwell, L. H. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev. 8, 652–665 ( 1994).

    CAS  PubMed  Google Scholar 

  104. Allen, J. B., Zhou, Z., Siede, W., Friedberg, E. C. & Elledge, S. J. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev. 8, 2416–2428 ( 1994).

    Google Scholar 

  105. Desany, B. A., Alcasabas, A. A., Bachant, J. B. & Elledge, S. J. Recovery from DNA replication stress is the essential function of the S-phase checkpoint pathway. Genes Dev. 12, 2956– 2970 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 ( 2000).

    CAS  PubMed  Google Scholar 

  107. Vogelauer, M., Wu, J., Suka, N. & Grunstein, M. Global histone acetylation and deacetylation in yeast. Nature 408, 495–498 (2000).In this paper, the authors use chromatin immunoprecipitation methods to examine histone acetylation and deacetylation in large chromosomal domains.

    CAS  PubMed  Google Scholar 

  108. Wyrick, J. J. et al. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402, 418– 421 (1999).

    CAS  PubMed  Google Scholar 

  109. Hughes, T. R. et al. Functional discovery via a compendium of expression profiles . Cell 102, 109–126 (2000).

    CAS  PubMed  Google Scholar 

  110. Bernstein, B. E., Tong, J. K. & Schreiber, S. L. Genomewide studies of histone deacetylase function in yeast. Proc. Natl Acad. Sci. USA 97, 13708–13713 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank J. Gerton, C. D. Allis, F. Winston, J. Kohli, G. Smith and M. Lichten for comments and suggestions on the manuscript. I was supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Spo11

ARG4

HIS4

LEU2

rad50S

Bas1

Bas2

Gcn4

Rap1

Atf1

Mts1

RAD50

Swi6

CEN6

TAP2 (human)

Spo11

CARM1

Mec1

Rad6

Swi

Snf

FURTHER INFORMATION

Marshfield Clinic

Thomas Petes' lab

Glossary

GENE CONVERSION

The non-reciprocal transfer of information between homologous genes as a consequence of heteroduplex formation, followed by repair of mismatches in the heteroduplex. In current models of recombination, regions of potential gene conversion are associated with all crossovers.

HETERODUPLEX

A region of duplex DNA that contains strands derived from two different DNA molecules.

HOLLIDAY JUNCTION

When two DNA molecules exchange DNA strands (producing a heteroduplex), the point of the exchange is called a 'Holliday junction.'

LINKAGE DISEQUILIBRIUM

The condition in which the frequency of a particular haplotype for two loci is significantly greater than that expected from the product of the observed allelic frequencies at each locus.

MINISATELLITE

Regions of DNA in which repeat units of 10–50 base pairs are tandemly arranged in arrays 0.5–30 kb in length.

BROMODOMAIN

A protein motif (originally defined in the Drosophila Brahma protein) that is involved in binding certain acetylated histones; often associated with transcriptional activation.

CHROMODOMAIN

A protein motif that is involved in binding certain methylated histones; often associated with transcriptional repression.

CHECKPOINT

A position in the cell cycle at which progression can be arrested to complete a cellular function, such as the repair of DNA damage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petes, T. Meiotic recombination hot spots and cold spots. Nat Rev Genet 2, 360–369 (2001). https://doi.org/10.1038/35072078

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35072078

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing