Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox

Abstract

The production of reactive oxygen species (ROS) by neutrophils has a vital role in defence against a range of infectious agents, and is driven by the assembly of a multi-protein complex containing a minimal core of five proteins: the two membrane-bound subunits of cytochrome b558 (gp91phox and p22phox) and three soluble factors (GTP–Rac, p47phox and p67phox (refs 1, 2). This minimal complex can reconstitute ROS formation in vitro in the presence of non-physiological amphiphiles such as SDS. p40phox has subsequently been discovered as a binding partner for p67phox (ref. 3), but its role in ROS formation is unclear. Phosphoinositide-3-OH kinases (PI(3)Ks) have been implicated in the intracellular signalling pathways coordinating ROS formation4,5 but through an unknown mechanism. We show that the addition of p40phox to the minimal core complex allows a lipid product of PI(3)Ks, phosphatidylinositol 3-phosphate (PtdIns(3)P), to stimulate specifically the formation of ROS. This effect was mediated by binding of PtdIns(3)P to the PX domain6 of p40phox. These results offer new insights into the roles for PI(3)Ks and p40phox in ROS formation and define a cellular ligand for the orphan PX domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dependence of ROS formation activated by PtdIns(3,4,5)P3 and PtdIns(3)P on purified components.
Figure 2: PtdIns(3)P activates a relipidated oxidase complex in the presence of p40phox.
Figure 3: PtdIns(3)P binds to the PX domain of p40phox.

Similar content being viewed by others

References

  1. Segal, A. W. & Abo, A. Trends Biochem. Sci. 18, 43–47 (1993).

    Article  CAS  Google Scholar 

  2. Wientjes, F. B. & Segal, A. W. Semin. Cell. Biol. 6, 357–365 (1995).

    Article  CAS  Google Scholar 

  3. Wientjes, F. B., Hsuan, J. J., Totty, N. F. & Segal, A. W. Biochem.J. 296, 557–562 (1993).

    Article  CAS  Google Scholar 

  4. Baggiolini, M. et al. Exp. Cell Res. 169, 408–418 (1987).

    Article  CAS  Google Scholar 

  5. Condliffe, A. M. & Hawkins, P. T. Nature 404, 135–137 (2000).

    Article  CAS  Google Scholar 

  6. Ponting, C. P. Protein Sci. 5, 2353–2357 (1996).

    Article  CAS  Google Scholar 

  7. Pacold, M. E. et al. Cell 103, 931–943 (2000).

    Article  CAS  Google Scholar 

  8. Knoller, S., Shpungin, S. & Pick, E. J. Biol. Chem. 266, 2795–2804 (1991).

    CAS  PubMed  Google Scholar 

  9. Stenmark, H. & Aasland R. J. Cell Sci. 112, 4175–4183 (1999).

    CAS  PubMed  Google Scholar 

  10. Condliffe, A. M., Hawkins, P. T., Stephens, L. R., Haslett, C. & Chilvers, E. R. FEBS Lett 439, 147–151 (1998).

    Article  CAS  Google Scholar 

  11. Scianimanico, S. et al. Cell Microbiol. 1, 19–32 (1999).

    Article  CAS  Google Scholar 

  12. Desjardins, M. Trends Cell Biol. 5,184–186 (1995).

    Google Scholar 

  13. Painter, G. F. et al. J. Chem. Soc. Perkin Trans. 1, 923–935 (1999).

    Article  Google Scholar 

  14. Stephens, L. et al. Cell 89, 105–114 (1997).

    Article  CAS  Google Scholar 

  15. Erdjument-Bromage, H. et al. J. Chromatogr. 826, 167–181 (1998).

    Article  CAS  Google Scholar 

  16. Geromanos, S., Freckleton, G. & Tempst, P. Anal. Chem. 72, 777–790 (2000).

    Article  CAS  Google Scholar 

  17. Mann, M., Højrup, P. & Roepstorff P. Biol. Mass Spectrom. 22, 338–345 (1993).

    Article  CAS  Google Scholar 

  18. Abo, A., Boyhan, A., West, I., Thrasher A. J., & Segal, A. W. J. Biol. Chem. 267, 16767–16770 (1992).

    CAS  PubMed  Google Scholar 

  19. Diebold, B. A. & Bokoch, G. M. Nature Immunol. 2, 211–215 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Hall for GST–p67phox and GST–47phox bacterial expression plasmids, C. Erneux for SHIP-1 cDNA, and F. A. Norris for the inositol polyphosphate 4-phosphatase cDNA. We also acknowledge the Isaac Newton Trust for a contribution towards the Biacore 3000 machine. K.E.A. is a Beit Memorial Fellow, and P.T.H. is a BBSRC Advanced Research Fellow. This work was supported by the BBSRC, by the MRC (studentship to C.D.E.) and by a National Cancer Institute core grant (to P.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Len R. Stephens.

Supplementary information

Download plugins

Method S1 Purification and assaying of cytosolic factors from pig neutrophil cytosol. (PDF 57 kb)

Method S2 Assay of phosphoinositide phosphatase activities of SHIP-1 and Inositol polyphosphate 4-phosphatase mutants

Figure S1 Purification of three factors allowing PtdIns(3,4,5)P3 to stimulate ROS production.

Figure S2 SHIP-1 and Inositol polyphosphate 4-phosphatase lipid phosphatase activity are required for PtdIns(3,4,5)P3 stimulated ROS formation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellson, C., Gobert-Gosse, S., Anderson, K. et al. PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nat Cell Biol 3, 679–682 (2001). https://doi.org/10.1038/35083076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35083076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing