Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

A bouquet makes ends meet

Abstract

The 'chromosomal bouquet' is a polarized chromosomal arrangement that is highly conserved among eukaryotes. There have been many hypotheses about its role in the pairing of meiotic chromosomes, but until recently these have been difficult to test.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromosomal bouquets of different species.
Figure 2: Dynamics of the bouquet stage in prophase I of flatworm (a–c) and mouse (d–f).
Figure 3: Chromosome topology in the flatworm bouquet.

References

  1. Bütschli, O. Studien über die ersten Entwicklungsvorgänge der Eizelle, die Zelltheilung und die Conjugation der Infusorien (Ch. Winter, Frankfurt a. M., 1876).

    Book  Google Scholar 

  2. Flemming, W. Über das Verhalten des Kerns bei der Zelltheilung und über die Bedeutung mehrkerniger Zellen. Archiv. Pathol. Anat. 77, 1–28 (1879).

    Article  Google Scholar 

  3. Paweletz, N. Walther Flemming: a pioneer of mitosis research. Nature Rev. Mol. Cell. Biol. 2, 72–75 (2001).

    Article  CAS  Google Scholar 

  4. Roux, W. Über die Bedeutung der Kerntheilungsfiguren: Eine hypothetische Erörterung (Wilhelm Engelmann, Leipzig, 1883).

    Google Scholar 

  5. Rabl, C. Über Zelltheilung. Morphol. Jahrbuch 10, 214–330 (1885).

    Google Scholar 

  6. Eisen, G. The spermatogenesis of Batrachoseps. J. Morphol. 17, 1–117 (1900).

    Article  Google Scholar 

  7. von Wettstein, D., Rasmussen, S. W. & Holm, P. B. The synaptonemal complex in genetic segregation. Annu. Rev. Genet. 18, 331–413 (1984).

    Article  CAS  Google Scholar 

  8. Loidl, J. The initiation of meiotic chromosome pairing: the cytological view. Genome 33, 759–778 (1990).

    Article  CAS  Google Scholar 

  9. Roeder, S. Meiosis: it takes two to tango. Genes Dev. 11, 2600–2621 (1997).

    Article  CAS  Google Scholar 

  10. Zickler, D. & Kleckner, N. The leptotene–zygotene transition of meiosis. Annu. Rev. Genet. 32, 619–697 (1998).

    Article  CAS  Google Scholar 

  11. van Beneden, E. Recherches sur la Maturation de l'oeuf, la Fécondation et la Division Cellulaire (Gand und Leipzig: Librarie Clemm: G. Masson, Paris, 1883).

    Google Scholar 

  12. Weismann, A. Über die Zahl der Richtungskörper und über ihre Bedeutung für die Vererbung (Jena, Gustav Fischer, 1887).

    Google Scholar 

  13. Boveri, T. Befruchtung. Ergebn. d. Anat. u. Entwg.-Gesch. 1, Jahrg. 1891 (1892).

    Google Scholar 

  14. Rückert, J. Zur Eireifung bei Copepoden. Anatomische Hefte (1. Abt.) 4, 262–351 (1894).

    Article  Google Scholar 

  15. Moore, J. E. S. On the structural changes in the reproductive cells in the spermatogenesis of Elasmobranchs. Q. J. Microsc. Sci. 38, 275–313 (1895).

    Google Scholar 

  16. Sutton, W. S. The chromosomes in heredity. Biol. Bull. 4, 231–251 (1903).

    Article  Google Scholar 

  17. Boveri, T. Über die Konjugation der chromatischen Kernsubstanz. Verhandlungen der dt. Zoolog Ges. 13 Jahresvers. zu Würzburg. (ed. Korschelt, E.) (Engelmann, W., Leipzig, 1903).

    Google Scholar 

  18. Schreiner, A. & Schreiner, K. E. Über die Entwicklung der männlichen Geschlechtszellen von Myxine glutinosa (L). Archives de Biol. 21, 315–355 (1905).

    Google Scholar 

  19. Boveri, T. Ergebnisse über die Konstitution der chromatischen Substanz des Zellkerns (Gustav Fischer, Jena, 1904).

    Google Scholar 

  20. Gelei, J. Weitere Studien über die Oogenese des Dendrocoelum lacteum. III. Die Konjugation der Chromosomen in der Literatur und meine Befunde. Archiv f. Zellforsch. 16, 300–365 (1921).

    Google Scholar 

  21. Belar, K. in Handbuch der Vererbungswissenschaft Vol. 1 (eds Baur, E. & Hartmann, M.) 168–201 (Geb. Borntraeger, Berlin, 1928).

    Google Scholar 

  22. Muller, H. J. The remaking of chromosomes. The Collecting Net (Wood's Hole) 13, 181–195 (1938).

    Google Scholar 

  23. Wilson, E. B. The Cell in Heredity and Development 3rd edn (MacMillan, New York, 1925).

    Google Scholar 

  24. Fussell, C. P. in Meiosis (ed. Moens, P. B.) 275–299 (Academic, Orlando, 1987).

    Book  Google Scholar 

  25. Moses, M. J. Chromosomal structures in crayfish spermatocytes. J. Biophys. Biochem. Cytol. 2, 215–218 (1956).

    Article  CAS  Google Scholar 

  26. Fawcett, D. W. The fine structure of chromosomes in meiotic prophase of vertebrate spermatocytes. J. Biophys. Biochem. Cytol. 2, 403–406 (1956).

    Article  CAS  Google Scholar 

  27. Moens, P. B. The fine structure of meiotic chromosome polarization and pairing in Locusta migratoria spermatocytes. Chromosoma 28, 1–25 (1969).

    Article  CAS  Google Scholar 

  28. Carpenter, A. Electron microscopy of meiosis in Drosophila melanogaster females. Chromosoma 51, 157–182 (1975).

    Article  CAS  Google Scholar 

  29. Chikashige, Y. et al. Telomere-led premeiotic chromosome movement in fission yeast. Science 264, 270–273 (1994).

    Article  CAS  Google Scholar 

  30. Santos, J. L., Jimenez, M. M. & Diez, M. Meiosis in haploid rye: extensive synapsis and low chiasma frequency. Heredity 73, 580–588 (1994).

    Article  Google Scholar 

  31. Rasmussen, S. W. The meiotic prophase in Bombyx mori females analyzed by three dimensional reconstructions of synaptonemal complexes. Chromosoma 54, 245–293 (1976).

    Article  CAS  Google Scholar 

  32. Rockmill, B. & Roeder, G. S. Telomere-mediated chromosome pairing during meiosis in budding yeast. Genes Dev. 12, 2574–2586 (1998).

    Article  CAS  Google Scholar 

  33. Trelles-Sticken, E., Loidl, J. & Scherthan, H. Bouquet formation in budding yeast: initiation of recombination is not required for meiotic telomere clustering. J. Cell Sci. 112, 651–658 (1999).

    CAS  PubMed  Google Scholar 

  34. Dernburg, A. F., Sedat, J. W., Cande, W. Z. & Bass, H. W. in Telomeres (eds Blackburn, E. H. & Greider, C. W.) 295–338 (Cold Spring Harbor Monograph Series, Cold Spring Harbor, New York, 1995).

    Google Scholar 

  35. Scherthan, H., Bähler, J. & Kohli, J. Dynamics of chromosome organization and pairing during meiotic prophase of fission yeast. J. Cell Biol. 127, 273–285 (1994).

    Article  CAS  Google Scholar 

  36. Scherthan, H. et al. Meiotic telomere distribution and Sertoli cell nuclear architecture is altered in Atm- and Atm/p53-deficient mice. Mol. Cell Biol. 20, 7773–7783 (2000).

    Article  CAS  Google Scholar 

  37. Scherthan, H. et al. Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J. Cell Biol. 134, 1109–1125 (1996).

    Article  CAS  Google Scholar 

  38. Kastan, M. B. & Lim D.-S. The many substrates and functions of ATM. Nature Rev. Mol. Cell Biol. 1, 179–186 (2000).

    Article  CAS  Google Scholar 

  39. Bass, H. W. et al. Evidence for the coincident initiation of homolog pairing and synapsis during the telomere-clustering (bouquet) stage of meiotic prophase. J. Cell Sci. 113, 1033–1042 (2000).

    CAS  PubMed  Google Scholar 

  40. Hiraoka, T. & Fuchikawa, Y. An electron microscopic and morphometric analysis on the cell polarity in the synaptic stage of meiosis. Cytologia 58, 77–84 (1993).

    Article  Google Scholar 

  41. Martinez-Perez, E. et al. Homologous chromosome pairing in wheat. J. Cell Sci. 112, 1761–1769 (1999).

    CAS  PubMed  Google Scholar 

  42. McEachern, M. J., Krauskopf, A. & Blackburn, E. H. Telomeres and their control. Annu. Rev. Genet. 34, 331–358 (2000).

    Article  CAS  Google Scholar 

  43. Naito, T., Matsuura, A. & Ishikawa, F. Circular chromosome formation in a fission yeast mutant defective in two ATM homologues. Nature Genet. 20, 203–206 (1998).

    Article  CAS  Google Scholar 

  44. Klein, F. et al. Localization of Rap1 and topoisomerase II in nuclei and chromosomes of yeast. J. Cell Biol. 117, 935–948 (1992).

    Article  CAS  Google Scholar 

  45. Scherthan, H. et al. Mammalian meiotic telomeres: protein composition and their redistribution in relation to nuclear pores. Mol. Biol. Cell 11, 4189–4203 (2000).

    Article  CAS  Google Scholar 

  46. Li, B., Oestreich, S. & de Lange, T. Identification of human Rap1: implications for telomere evolution. Cell 101, 471–483 (2000).

    Article  CAS  Google Scholar 

  47. Cooper, J. P., Watanabe, Y. & Nurse, P. Fission yeast Taz1 protein is required for meiotic telomere clustering and recombination. Nature 392, 828–831 (1998).

    Article  CAS  Google Scholar 

  48. Nimmo, E. R., Pidoux, A. L., Perry, P. E. & Allshire, R. C. Defective meiosis in telomere-silencing mutants of Schizosaccharomyces pombe. Nature 392, 825–828 (1998).

    Article  CAS  Google Scholar 

  49. Chikashige, Y. et al. Meiotic nuclear reorganization: switching the position of centromeres and telomeres in the fission yeast Schizosaccharomyces pombe. EMBO J. 16, 193–202 (1997).

    Article  CAS  Google Scholar 

  50. Shimanuki, M. et al. A novel fission yeast gene, kms1+, is required for the formation of meiotic prophase-specific nuclear architecture. Mol. Gen. Genet. 254, 238–249 (1997).

    Article  CAS  Google Scholar 

  51. Yamamoto, A., West, R. R., McIntosh, J. R. & Hiraoka, Y. A cytoplasmic dynein heavy chain is required for oscillatory nuclear movement of meiotic prophase and efficient meiotic recombination in fission yeast. J. Cell Biol. 145, 1233–1249 (1999).

    Article  CAS  Google Scholar 

  52. Driscoll, C. J. & Darvey, N. L. Chromosome pairing: effect of colchicine on an isochromosome. Science 169, 290–291 (1970).

    Article  CAS  Google Scholar 

  53. Salonen, K., Paranko, J. & Parvinen, M. A colcemid sensitive mechanism involved in regulation of chromosome movements during meiotic pairing. Chromosoma 85, 611–618 (1982).

    Article  CAS  Google Scholar 

  54. Bascom-Slack, C. A. & Dawson, D. S. The yeast motor protein, Kar3p, is essential for meiosis I. J. Cell Biol. 139, 459–467 (1997).

    Article  CAS  Google Scholar 

  55. Chua, P. R. & Roeder, G. S. Tam1, a telomere-associated meiotic protein, functions in chromosome synapsis and crossover interference. Genes Dev. 11, 1786–1800 (1997).

    Article  CAS  Google Scholar 

  56. Conrad, M. N., Dominguez, A. M. & Dresser, M. E. Ndj1p, a meiotic telomere protein required for normal chromosome synapsis and segregation in yeast. Science 276, 1252–1255 (1997).

    Article  CAS  Google Scholar 

  57. Trelles-Sticken, E., Dresser, M. E. & Scherthan, H. Meiotic telomere protein Ndj1p is required for meiosis specific telomere distribution and bouquet formation in budding yeast. J. Cell Biol. 151, 95–106 (2000).

    Article  CAS  Google Scholar 

  58. Podgornaya, O. I. et al. Nuclear envelope associated protein that binds telomeric DNAs. Mol. Reprod. Dev. 57, 16–25 (2000).

    Article  CAS  Google Scholar 

  59. Alsheimer, M., von Glasenapp, E., Schnolzer, M., Heid, H. & Benavente, R. Meiotic lamin C2: the unique amino-terminal hexapeptide GNAEGR is essential for nuclear envelope association. Proc. Natl Acad. Sci. USA 97, 13120–13125 (2000).

    Article  CAS  Google Scholar 

  60. Galy, V. et al. Nuclear pore complexes in the organization of silent telomeric chromatin. Nature 403, 108–112 (2000).

    Article  CAS  Google Scholar 

  61. Mahadevaiah, S. K. et al. Recombinational DNA double-strand breaks in mice precede synapsis. Nature Genet. 27, 271–276 (2001).

    Article  CAS  Google Scholar 

  62. Válogatta Szabó T. E. Attila. Kriterion Könyvkiadó, Téka-sorozat, A genetika évszázada (Bukarest, 1976).

    Google Scholar 

  63. Platner, G. Ueber die Entstehung des Nebenkerns uns seine Beziehung zur Kerntheilung. Archiv Mikrosk. Anat. 26, 343–369 (1885).

    Article  Google Scholar 

  64. Rasmussen, S. W. & Holm, P. B. Chromosome pairing in autotetraploid Bombyx mori females: mechanism for exclusive bivalent formation. Carlsberg Res. Comm. 44, 101–125 (1980).

    Article  Google Scholar 

  65. Bass, H. W., Marshall, W. F., Sedat, J. W., Agard, D. A. & Cande, W. Z. Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J. Cell Biol. 137, 5–18 (1997).

    Article  CAS  Google Scholar 

  66. Brown, R. On the organs and mode of fecundation in Orchideae and Asclepiadae. The Transact. Linn. Soc. Lond. 16, 685–737 (1833).

    Article  Google Scholar 

  67. Schneider, A. Untersuchungen über Plathelminthen. Jahresberichte der Oberhess. Ges. für Natur- und Heilkunde in Gieβen. 14, 69–140 (1873).

    Google Scholar 

  68. Waldeyer, W. Über Karyokinese und ihre Beziehung zu den Befruchtungsvogängen. Archiv. für Mikrosk. Anat. 32, 1–122 (1888).

    Article  Google Scholar 

  69. Farmer, J. B. & Moore, J. E. S. On the maiotic phase (reduction divisions) in animals and plants. Q. J. Microsc. Sci. 48, 489–557 (1905).

    Google Scholar 

  70. Pandita, T. K. et al. Atm inactivation results in aberrant telomere clustering during meiotic prophase. Mol. Cell. Biol. 19, 5096–5105 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to E. Trelles-Sticken for communication of data before publication; A. Villeneuve, Stanford University, USA, for critique on the manuscript; and E. Kessler, Babes-Bolay University, Romania, for providing the image from Ref. 62 and information on J. Gelei. I apologize to those whose work could not be cited owing to space restrictions. Support from the DFG is acknowledged.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Atm

cytoplasmic dynein

KAR3

NDJ1

TRF1

TRF2

lamin C2

MLP1

MLP2

FURTHER INFORMATION

Scherthan lab

Hypermedia glossary of genetic terms

Glossary

ACHIASMATE

Meiosis or chromosome pairs without crossing over and chiasmata. Achiasmate meiosis is usually confined to one of the sexes (Drosophila, Bombyx).

ASYNAPTIC

Meiosis that lacks a synaptonemal complex (for example, Schizosaccharomyces pombe). Asynapsis is also used to denote meiotic chromosome pairs that fail to synapse during prophase I and form univalents at metaphase I.

CHIASMATA

(Greek chiasma; 'cross'; Janssens, 1909). A term for the nodes where the individual chromosomes making up each pair remain in contact during the diplotene and diakinetic stages of prophase and metaphase of meiosis I. A chiasma arises as a consequence of crossing over.

DIPLOTENE

(Greek diploos, 'double' and tænia, 'band, ribbon'; von Winiwarter, 1900). The stage of meiosis in which the bivalent chromosome pair is visible under a light microscope as a longitudinally doubled thread.

HOMOLOGUE DISJUNCTION

Homologous chromosomes disjoin from each other during the meiosis I (reduction) division as a result of physical interactions established during prophase I (recombination or other).

LEPTOTENE

(Greek leptos, 'thin' and taenia, 'ribbon'; von Winiwarter, 1900). Chromosomes form long, thin, separated threads in the nucleus, which are not polarized.

PACHYTENE

(Greek pachys, 'thick'; von Winiwarter, 1900). All chromosomes are paired lengthwise, forming thick threads.

PROPHASE I

(Strasburger, 1884). The early stage of nuclear division before (Greek pro) the chromosomes are seen as two chromatids. Generally denotes the stage of mitosis or of meiosis I or II before breakdown of the nuclear membrane.

SYNAPSIS

(synapto, 'to fuse together'; Moore, 1895). The conjugation or union of parental chromosomes in pairs (synaptic mates) to form bivalents; the primary step in reduction division or meiosis.

SYNAPTONEMAL COMPLEX

(Moses, 1956, Fawcett, 1956). A tripartite ribbon (0.2-μm wide) consisting of two proteinaceous parallel strands (cores) running along homologous chromosomes. Both cores are connected through transverse filaments, which form a third central element through alignment of their central connecting points.

TELOMERE

(Greek telos, end; meros, part. Muller, 1938). Natural chromosome ends. Prevent stickiness associated with broken ends,.

ZYGOTENE

(Greek zygon, 'yoke' and taenia, 'ribbon'; Gregoire, 1907). Chromosome threads begin to pair side-by-side at one or more points by formation of the synaptonemal complex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherthan, H. A bouquet makes ends meet. Nat Rev Mol Cell Biol 2, 621–627 (2001). https://doi.org/10.1038/35085086

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35085086

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing