Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reproductive pair correlations and the clustering of organisms

Abstract

Clustering of organisms can be a consequence of social behaviour, or of the response of individuals to chemical and physical cues1. Environmental variability can also cause clustering: for example, marine turbulence transports plankton2,3,4,5,6,7,8 and produces chlorophyll concentration patterns in the upper ocean9,10,11. Even in a homogeneous environment, nonlinear interactions between species12,13,14 can result in spontaneous pattern formation. Here we show that a population of independent, random-walking organisms (‘brownian bugs’), reproducing by binary division and dying at constant rates, spontaneously aggregates. Using an individual-based model, we show that clusters form out of spatially homogeneous initial conditions without environmental variability, predator–prey interactions, kinesis or taxis. The clustering mechanism is reproductively driven—birth must always be adjacent to a living organism. This clustering can overwhelm diffusion and create non-poissonian correlations between pairs (parent and offspring) or organisms, leading to the emergence of patterns.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distributions of brownian bugs at different times in a simulation with Δ = 10-3 and N0 = 20,000.
Figure 2: Effects of stirring on the brownian bug clustering (Δ = 0.001, N0 = 20,000, as in Fig. 1).
Figure 3: Logarithmic and linear plots of g(r, t) - 1 versus r/Δ.

Similar content being viewed by others

References

  1. Flierl, G., Grünbaum, D., Levin, S. & Olson, D. From individuals to aggregations: the interplay between behaviour and physics. J. Theor. Biol. 196, 397–454 (1999).

    Article  CAS  Google Scholar 

  2. Abraham, E. R. The generation of plankton patchiness by turbulent stirring. Nature 391, 577–580 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Denman, K. L., Okubo, A. & Platt, T. The chlorophyll fluctuation spectrum in the sea. Limnol. Oceanogr. 22, 1033–1038 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Franks, P. J. S. Spatial pattern in dense algal blooms. Limnol. Oceanogr. 42, 1297–1305 (1997).

    Article  ADS  Google Scholar 

  5. Kierstead, H. & Slobodkin, L. B. The size of water masses containing plankton blooms. J. Mar. Res. 12, 141–147 (1953).

    Google Scholar 

  6. Neufeld, Z., López, C. & Haynes, P. H. Smooth-filament transition of active tracer fields stirred by chaotic advection. Phys. Rev. Lett. 82, 2606–2609 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Robinson, A. R. On the theory of advective effects on biological dynamics in the sea. Proc. R. Soc. Lond. A 453, 2295–2324 (1997).

    Article  ADS  Google Scholar 

  8. Steele, J. H. & Henderson, E. W. A simple model for plankton patchiness. J. Plankton Res. 14, 1397–1403 (1992).

    Article  Google Scholar 

  9. Gower, J. F. R., Denman, K. L. & Holyer, R. J. Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure. Nature 288, 157–159 (1980).

    Article  ADS  Google Scholar 

  10. Lesieur, M. & Sadourny, R. Satellite-sensed turbulent ocean structure. Nature 294, 673 (1980).

    Article  Google Scholar 

  11. Abraham, E. R. et al. Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature 407, 727–730 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Durrett, R. & Levin, S. The importance of being discrete (and spatial). Theor. Pop. Biol. 46, 363–394 (1994).

    Article  Google Scholar 

  13. Levin, S. & Segel, L. A. Hypothesis for origin of planktonic patchiness. Nature 259, 659 (1976).

    Article  ADS  Google Scholar 

  14. Segel, L. A. & Jackson, J. L. Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 37, 545–559 (1972).

    Article  CAS  Google Scholar 

  15. Skellam, J. G. Random dispersion in theoretical populations. Biometrika 38, 196–218 (1951).

    Article  MathSciNet  CAS  Google Scholar 

  16. Keeling, M. J., Mezić, I., Hendry, R. J., McGlade, J. & Rand, D. A. Characteristic length scales of spatial models in ecology via fluctuation analysis. Phil. Trans. R. Soc. Lond. B 352, 1589–1601 (1997).

    Article  ADS  Google Scholar 

  17. Pascual, M. & Levin, S. A. From individuals to population densities: searching for the intermediate scale of nontrivial determinism. Ecology 80, 2225–2236 (1999).

    Article  Google Scholar 

  18. Rand, D. A. & Wilson, H. B. Using spatio-temporal chaos and intermediate scale determinism in artificial ecologies to quantify spatially extended systems. Proc. R. Soc. Lond. B 259, 55–63 (1995).

    Article  ADS  Google Scholar 

  19. Batchelor, G. K. The effect of turbulence on material lines and surfaces. Proc. R. Soc. Lond. 213, 349–366 (1952).

    Article  ADS  MathSciNet  Google Scholar 

  20. Batchelor, G. K. Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113–133 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  21. Kraichnan, R. H. Convection of a passive scalar by a quasi-uniform random stretching field. J. Fluid Mech. 64, 737–762 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  22. Pierrehumbert, R. T. On tracer microstructure in the large-eddy dominated regime. Chaos Solitions Fractals 4, 1091–1110 (1994).

    Article  ADS  Google Scholar 

  23. van Kampen, N. G. Stochastic Processes in Physics and Chemistry Ch. 2 (North-Holland, Amsterdam, 1981).

    MATH  Google Scholar 

  24. Pierrehumbert, R. T. in Nonlinear Phenomena in Atmospheric and Oceanic Sciences Ch. 2 (Springer, New York, 1991).

    Google Scholar 

  25. Harris, T. E. The Theory of Branching Processes Ch. 1 (Springer, Berlin, 1963).

    Book  Google Scholar 

  26. Le Gall, J. F. Spatial Branching Processes, Random Snakes and Partial Differential Equations, Lectures in Mathematics, ETH Zürich (Birkhäuser, Basel, 1999).

    Book  Google Scholar 

Download references

Acknowledgements

We thank E. Ben-Naim, R. Durrett, G. Flierl, P. Krapivsky, P. Morrison and F. Williams for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. R. Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, W., Roberts, A. & Stuhne, G. Reproductive pair correlations and the clustering of organisms. Nature 412, 328–331 (2001). https://doi.org/10.1038/35085561

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35085561

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing