Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular basis of mechanosensory transduction

Abstract

Mechanotransduction — a cell's conversion of a mechanical stimulus into an electrical signal — reveals vital features of an organism's environment. From hair cells and skin mechanoreceptors in vertebrates, to bristle receptors in flies and touch receptors in worms, mechanically sensitive cells are essential in the life of an organism. The scarcity of these cells and the uniqueness of their transduction mechanisms have conspired to slow molecular characterization of the ensembles that carry out mechanotransduction. But recent progress in both invertebrates and vertebrates is beginning to reveal the identities of proteins essential for transduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General features of mechanosensory transduction.
Figure 2: C. elegans touch-receptor structure and transduction model.
Figure 3: Drosophila bristle-receptor model.
Figure 4: Inner-ear structure and hair-cell transduction model.

Similar content being viewed by others

References

  1. Chalfie, M. A molecular model for mechanosensation in Caenorhabditis elegans. Biol. Bull. 192, 125–130 (1997).

    CAS  PubMed  Google Scholar 

  2. Tavernarakis, N. & Driscoll, M. Molecular modeling of mechanotransduction in the nematode Caenorhabditis elegans. Annu. Rev. Physiol. 59, 659–689 (1997).

    CAS  PubMed  Google Scholar 

  3. Hudspeth, A. J. Hair-bundle mechanics and a model for mechanoelectrical transduction by hair cells. Soc. Gen. Physiol. Ser. 47, 357–370 (1992).

    CAS  PubMed  Google Scholar 

  4. Narins, P. M. & Lewis, E. R. The vertebrate ear as an exquisite seismic sensor. J. Acoust. Soc. Am. 76, 1384–1387 (1984).

    ADS  CAS  PubMed  Google Scholar 

  5. Sukharev, S. I., Blount, P., Martinac, B., Blattner, F. R. & Kung, C. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368, 265–268 (1994).

    ADS  CAS  PubMed  Google Scholar 

  6. Kloda, A. & Martinac, B. Molecular identification of a mechanosensitive channel in archaea. Biophys. J. 80, 229–240 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chalfie, M. & Sulston, J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev. Biol. 82, 358–370 (1981).

    CAS  PubMed  Google Scholar 

  8. Chalfie, M. & Au, M. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243, 1027–1033 (1989).

    ADS  CAS  PubMed  Google Scholar 

  9. Duggan, A., Ma, C. & Chalfie, M. Regulation of touch receptor differentiation by the Caenorhabditis elegans mec-3 and unc-86 genes. Development 125, 4107–4119 (1998).

    CAS  PubMed  Google Scholar 

  10. Way, J. C. & Chalfie, M. mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell 54, 5–16 (1988).

    CAS  PubMed  Google Scholar 

  11. Savage, C. et al. mec-7 is a beta-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. Genes Dev. 3, 870–881 (1989).

    CAS  PubMed  Google Scholar 

  12. Fukushige, T. et al. MEC-12, an α-tubulin required for touch sensitivity in C. elegans. J. Cell Sci. 112, 395–403 (1999).

    CAS  PubMed  Google Scholar 

  13. Huang, M., Gu, G., Ferguson, E. L. & Chalfie, M. A stomatin-like protein necessary for mechanosensation in C. elegans. Nature 378, 292–295 (1995).

    ADS  CAS  PubMed  Google Scholar 

  14. Du, H., Gu, G., William, C. M. & Chalfie, M. Extracellular proteins needed for C. elegans mechanosensation. Neuron 16, 183–194 (1996).

    CAS  PubMed  Google Scholar 

  15. Gu, G., Caldwell, G. A. & Chalfie, M. Genetic interactions affecting touch sensitivity in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 93, 6577–6582 (1996).

    ADS  CAS  PubMed  Google Scholar 

  16. Alvarez de la Rosa, D., Canessa, C. M., Fyfe, G. K. & Zhang, P. Structure and regulation of amiloride-sensitive sodium channels. Annu. Rev. Physiol. 62, 573–594 (2000).

    Google Scholar 

  17. Garcia-Anoveros, J., Ma, C. & Chalfie, M. Regulation of Caenorhabditis elegans degenerin proteins by a putative extracellular domain. Curr. Biol. 5, 441–448 (1995).

    CAS  PubMed  Google Scholar 

  18. Huang, M. & Chalfie, M. Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367, 467–470 (1994).

    ADS  CAS  PubMed  Google Scholar 

  19. Garcia-Anoveros, J., Garcia, J. A., Liu, J. D. & Corey, D. P. The nematode degenerin UNC-105 forms ion channels that are activated by degeneration- or hypercontraction-causing mutations. Neuron 20, 1231–1241 (1998).

    CAS  PubMed  Google Scholar 

  20. Kizer, N., Guo, X. L. & Hruska, K. Reconstitution of stretch-activated cation channels by expression of the α-subunit of the epithelial sodium channel cloned from osteoblasts. Proc. Natl Acad. Sci. USA 94, 1013–1018 (1997).

    ADS  CAS  PubMed  Google Scholar 

  21. Adams, C. M. et al. Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J. Cell Biol. 140, 143–152 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Drummond, H. A., Price, M. P., Welsh, M. J. & Abboud, F. M. A molecular component of the arterial baroreceptor mechanotransducer. Neuron 21, 1435–1441 (1998).

    CAS  PubMed  Google Scholar 

  23. Garcia-Anoveros, J., Samad, T. A., Woolf, C. J. & Corey, D. P. Transport and localization of the DEG/ENaC ion channel BNaC1α to peripheral mechanosensory terminals of dorsal root ganglia neurons. J. Neurosci. 21, 2678–2686 (2001).

    CAS  PubMed  Google Scholar 

  24. Price, M. P. et al. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407, 1007–1011 (2000).

    ADS  CAS  PubMed  Google Scholar 

  25. Fricke, B. et al. Epithelial Na+ channels and stomatin are expressed in rat trigeminal mechanosensory neurons. Cell Tissue Res. 299, 327–334 (2000).

    CAS  PubMed  Google Scholar 

  26. Drummond, H. A., Abboud, F. M. & Welsh, M. J. Localization of beta and gamma subunits of ENaC in sensory nerve endings in the rat foot pad. Brain Res. 884, 1–12 (2000).

    CAS  PubMed  Google Scholar 

  27. Hummler, E. & Horisberger, J. D. Genetic disorders of membrane transport. V. The epithelial sodium channel and its implication in human diseases. Am. J. Physiol. 276, G567–G571 (1999).

  28. Kernan, M., Cowan, D. & Zuker, C. Genetic dissection of mechanosensory transduction: mechanoreception—defective mutations of Drosophila. Neuron 12, 1195–1206 (1994).

    CAS  PubMed  Google Scholar 

  29. Walker, R. G., Willingham, A. T. & Zuker, C. S. A Drosophila mechanosensory transduction channel. Science 287, 2229–2234 (2000).

    ADS  CAS  PubMed  Google Scholar 

  30. Eberl, D. F., Hardy, R. W. & Kernan, M. J. Genetically similar transduction mechanisms for touch and hearing in Drosophila. J. Neurosci. 20, 5981–5988 (2000).

    CAS  PubMed  Google Scholar 

  31. Chung, Y. D., Zhu, J., Han, Y. & Kernan, M. J. nompA encodes a PNS-specific, ZP domain protein required to connect mechanosensory dendrites to sensory structures. Neuron 29, 415–428 (2001).

    CAS  PubMed  Google Scholar 

  32. Legan, P. K., Rau, A., Keen, J. N. & Richardson, G. P. The mouse tectorins. Modular matrix proteins of the inner ear homologous to components of the sperm-egg adhesion system. J. Biol. Chem. 272, 8791–8801 (1997).

    CAS  PubMed  Google Scholar 

  33. Sedgwick, S. G. & Smerdon, S. J. The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem. Sci. 24, 311–316 (1999).

    CAS  PubMed  Google Scholar 

  34. Rubtsov, A. M. & Lopina, O. D. Ankyrins. FEBS Lett. 482, 1–5 (2000).

    CAS  PubMed  Google Scholar 

  35. Colbert, H. A., Smith, T. L. & Bargmann, C. I. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J. Neurosci. 17, 8259–8269 (1997).

    CAS  PubMed  Google Scholar 

  36. Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schweisguth, F., Gho, M. & Lecourtois, M. Control of cell fate choices by lateral signaling in the adult peripheral nervous system of Drosophila melanogaster. Dev. Genet. 18, 28–39 (1996).

    CAS  PubMed  Google Scholar 

  38. Adam, J. et al. Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila sense-organ development. Development 125, 4645–4654 (1998).

    CAS  PubMed  Google Scholar 

  39. Bermingham, N. A. et al. Math1: an essential gene for the generation of inner ear hair cells. Science 284, 1837–1841 (1999).

    CAS  PubMed  Google Scholar 

  40. Ben-Arie, N. et al. Functional conservation of atonal and Math1 in the CNS and PNS. Development 127, 1039–1048 (2000).

    CAS  PubMed  Google Scholar 

  41. Corey, D. P. & Hudspeth, A. J. Kinetics of the receptor current in bullfrog saccular hair cells. J. Neurosci. 3, 962–976 (1983).

    CAS  PubMed  Google Scholar 

  42. van Netten, S. M. & Kros, C. J. Gating energies and forces of the mammalian hair cell transducer channel and related hair bundle mechanics. Proc. R. Soc. Lond. B 267, 1915–1923 (2000).

    CAS  Google Scholar 

  43. Pickles, J. O., Comis, S. D. & Osborne, M. P. Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hearing Res. 15, 103–112 (1984).

    CAS  Google Scholar 

  44. Kachar, B., Parakkal, M., Kurc, M., Zhao, Y. & Gillespie, P. G. High-resolution structure of hair-cell tip links. Proc. Natl Acad. Sci. USA 97, 13336–13341 (2000).

    ADS  CAS  PubMed  Google Scholar 

  45. Corey, D. P. & Hudspeth, A. J. Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281, 675–677 (1979).

    ADS  CAS  PubMed  Google Scholar 

  46. Crawford, A. C., Evans, M. G. & Fettiplace, R. The actions of calcium on the mechano-electrical transducer current of turtle hair cells. J. Physiol. 434, 369–398 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ricci, A. J. & Fettiplace, R. Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph. J. Physiol. 506, 159–173 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kroese, A. B., Das, A. & Hudspeth, A. J. Blockage of the transduction channels of hair cells in the bullfrog's sacculus by aminoglycoside antibiotics. Hear Res. 37, 203–217 (1989).

    CAS  PubMed  Google Scholar 

  49. Rusch, A., Kros, C. J. & Richardson, G. P. Block by amiloride and its derivatives of mechano-electrical transduction in outer hair cells of mouse cochlear cultures. J. Physiol. 474, 75–86 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sand, O. Effects of different ionic environments on the mechano-sensitivity of the lateral line organs in the mudpuppy. J. Comp. Physiol. A 102, 27–42 (1975).

    CAS  Google Scholar 

  51. Glowatzki, E., Ruppersberg, J. P., Zenner, H. P. & Rusch, A. Mechanically and ATP-induced currents of mouse outer hair cells are independent and differentially blocked by d-tubocurarine. Neuropharmacology 36, 1269–1275 (1997).

    CAS  PubMed  Google Scholar 

  52. Baumann, M. & Roth, A. The Ca2+ permeability of the apical membrane in neuromast hair cells. J. Comp. Physiol. 158, 681–688 (1986).

    CAS  Google Scholar 

  53. Jorgensen, F. & Kroese, A. B. Ca selectivity of the transduction channels in the hair cells of the frog sacculus. Acta Physiol. Scand. 155, 363–376 (1995).

    CAS  PubMed  Google Scholar 

  54. Rusch, A. & Hummler, E. Mechano-electrical transduction in mice lacking the alpha-subunit of the epithelial sodium channel. Hear Res. 131, 170–176 (1999).

    CAS  PubMed  Google Scholar 

  55. Housley, G. D. et al. Expression of the P2X2 receptor subunit of the ATP-gated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission. J. Neurosci. 19, 8377–8388 (1999).

    CAS  PubMed  Google Scholar 

  56. Housley, G. D., Luo, L. & Ryan, A. F. Localization of mRNA encoding the P2X2 receptor subunit of the adenosine 5′-triphosphate-gated ion channel in the adult and developing rat inner ear by in situ hybridization. J. Comp. Neurol. 393, 403–414 (1998).

    CAS  PubMed  Google Scholar 

  57. Kros, C. J., Rüsch, A. & Richardson, G. P. Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proc. R. Soc. Lond. B 249, 185–193 (1992).

    ADS  CAS  Google Scholar 

  58. Harteneck, C., Plant, T. D. & Schultz, G. From worm to man: three subfamilies of TRP channels. Trends Neurosci. 23, 159–166 (2000).

    CAS  Google Scholar 

  59. Hudspeth, A. J. & Gillespie, P. G. Pulling springs to tune transduction: adaptation by hair cells. Neuron 12, 1–9 (1994).

    CAS  PubMed  Google Scholar 

  60. Howard, J. & Hudspeth, A. J. Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog's saccular hair cell. Proc. Natl Acad. Sci. USA 84, 3064–3068 (1987).

    ADS  CAS  PubMed  Google Scholar 

  61. Steel, K. P. & Kros, C. J. A genetic approach to understanding auditory function. Nature Genet. 27, 143–149 (2001).

    CAS  PubMed  Google Scholar 

  62. Liu, J., Schrank, B. & Waterston, R. H. Interaction between a putative mechanosensory membrane channel and a collagen. Science 273, 361–364 (1996).

    ADS  CAS  PubMed  Google Scholar 

  63. Ricci, A. J. & Fettiplace, R. The effects of calcium buffering and cyclic AMP on mechano-electrical transduction in turtle auditory hair cells. J. Physiol. 501, 111–124 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Benser, M. E., Marquis, R. E. & Hudspeth, A. J. Rapid, active hair bundle movements in hair cells from the bullfrog's sacculus. J. Neurosci. 16, 5629–5643 (1996).

    CAS  PubMed  Google Scholar 

  65. Ricci, A. J., Crawford, A. C. & Fettiplace, R. Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. J. Neurosci. 20, 7131–7142 (2000).

    CAS  PubMed  Google Scholar 

  66. Martin, P., Mehta, A. D. & Hudspeth, A. J. Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell. Proc. Natl Acad. Sci. USA 97, 12026–12031 (2000).

    ADS  CAS  PubMed  Google Scholar 

  67. Gillespie, P. G. & Corey, D. P. Myosin and adaptation by hair cells. Neuron 19, 955–958 (1997).

    CAS  PubMed  Google Scholar 

  68. Richardson, G. P. et al. A missense mutation in myosin VIIA prevents aminoglycoside accumulation in early postnatal cochlear hair cells. Ann. NY Acad. Sci. 884, 110–124 (1999).

    CAS  PubMed  Google Scholar 

  69. Gillespie, P. G. & Hudspeth, A. J. High-purity isolation of bullfrog hair bundles and subcellular and topological localization of constituent proteins. J. Cell Biol. 112, 625–640 (1991).

    CAS  PubMed  Google Scholar 

  70. Gibson, F. et al. A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374, 62–64 (1995).

    ADS  CAS  PubMed  Google Scholar 

  71. Self, T. et al. Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 125, 557–566 (1998).

    CAS  PubMed  Google Scholar 

  72. Ernest, S. et al. Mariner is defective in myosin VIIA: a zebrafish model for human hereditary deafness. Hum. Mol. Genet. 9, 2189–2196 (2000).

    CAS  PubMed  Google Scholar 

  73. Hasson, T. et al. Unconventional myosins in inner-ear sensory epithelia. J. Cell Biol. 137, 1287–1307 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bolz, H. et al. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nature Genet. 27, 108–112 (2001).

    CAS  PubMed  Google Scholar 

  75. Di Palma, F. et al. Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nature Genet. 27, 103–107 (2001).

    CAS  PubMed  Google Scholar 

  76. Ahmed, Z. M. et al. Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. Am. J. Hum. Genet. 69, 25–34 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Alagramam, K. N. et al. Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. Hum. Mol. Genet. 10, 1709–1718 (2001).

    CAS  PubMed  Google Scholar 

  78. Alagramam, K. N. et al. The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pcdh15, a novel protocadherin gene. Nature Genet. 27, 99–102 (2001).

    CAS  PubMed  Google Scholar 

  79. Eudy, J. D. et al. Mutation of a gene encoding a protein with extracellular matrix motifs in Usher syndrome type IIa. Science 280, 1753–1757 (1998).

    ADS  CAS  PubMed  Google Scholar 

  80. Kussel-Andermann, P. et al. Unconventional myosin VIIA is a novel A-kinase-anchoring protein. J. Biol. Chem. 275, 29654–29659 (2000).

    CAS  PubMed  Google Scholar 

  81. Kussel-Andermann, P. et al. Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin-catenins complex. EMBO J. 19, 6020–6029 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Self, T. et al. Role of myosin VI in the differentiation of cochlear hair cells. Dev. Biol. 214, 331–341 (1999).

    CAS  PubMed  Google Scholar 

  83. Lechler, T., Shevchenko, A. & Li, R. Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. J. Cell Biol. 148, 363–373 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhao, Y., Yamoah, E. N. & Gillespie, P. G. Regeneration of broken tip links and restoration of mechanical transduction in hair cells. Proc. Natl Acad. Sci. USA 93, 15469–15474 (1996).

    ADS  CAS  PubMed  Google Scholar 

  85. Kozel, P. J. et al. Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. J. Biol. Chem. 273, 18693–18696 (1998).

    CAS  PubMed  Google Scholar 

  86. Street, V. A., McKee-Johnson, J. W., Fonseca, R. C., Tempel, B. L. & Noben-Trauth, K. Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nature Genet. 19, 390–394 (1998).

    CAS  PubMed  Google Scholar 

  87. Takahashi, K. & Kitamura, K. A point mutation in a plasma membrane Ca2+-ATPase gene causes deafness in Wriggle Mouse Sagami. Biochem. Biophys. Res. Commun. 261, 773–778 (1999).

    CAS  PubMed  Google Scholar 

  88. Dumont, R. et al. Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles. J. Neurosci. 21, 5066–5078 (2001).

    CAS  PubMed  Google Scholar 

  89. Yamoah, E. N. et al. Plasma membrane Ca2+-ATPase extrudes Ca2+ from hair cell stereocilia. J. Neurosci. 18, 610–624 (1998).

    CAS  PubMed  Google Scholar 

  90. Shepherd, G. M. G., Barres, B. A. & Corey, D. P. “Bundle-blot” purification and initial protein characterization of hair cell stereocilia. Proc. Natl Acad. Sci. USA 86, 4973–4977 (1989).

    ADS  CAS  PubMed  Google Scholar 

  91. Walker, R. G., Hudspeth, A. J. & Gillespie, P. G. Calmodulin and calmodulin-binding proteins in hair bundles. Proc. Natl Acad. Sci. USA 90, 2807–2811 (1993).

    ADS  CAS  PubMed  Google Scholar 

  92. Walker, R. G. & Hudspeth, A. J. Calmodulin controls adaptation of mechanoelectrical transduction by hair cells of the bullfrog's sacculus. Proc. Natl Acad. Sci. USA 93, 2203–2207 (1996).

    ADS  CAS  PubMed  Google Scholar 

  93. Noben-Trauth, K., Zheng, Q. Y., Johnson, K. R. & Nishina, P. M. mdfw: a deafness susceptibility locus that interacts with deaf waddler (dfw). Genomics 44, 266–272 (1997).

    CAS  PubMed  Google Scholar 

  94. Flock, A., Cheung, H. C., Flock, B. & Utter, G. Three sets of actin filaments in sensory cells of the inner ear. Identification and functional orientation determined by gel electrophoresis, immunofluorescence/electron microscopy. J. Neurocytol. 10, 133–147 (1981).

    CAS  PubMed  Google Scholar 

  95. Tilney, M. S. et al. Preliminary biochemical characterization of the stereocilia and cuticular plate of hair cells of the chick cochlea. J. Cell Biol. 109, 1711–1723 (1989).

    CAS  PubMed  Google Scholar 

  96. Zheng, L. et al. The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell 102, 377–385 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lynch, E. D. et al. Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science 278, 1315–1318 (1997).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Driscoll and N. Tavernarakis for the electron micrograph of Fig. 2 and T. A. Keil for the electron micrograph of Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Gillespie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillespie, P., Walker, R. Molecular basis of mechanosensory transduction. Nature 413, 194–202 (2001). https://doi.org/10.1038/35093011

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35093011

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing