Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the recA protein–ADP complex

Abstract

THE recA protein catalyses the ATP-driven homologous pairing and strand exchange of DNA molecules1–3. It is an allosteric enzyme: the ATPase activity is DNA-dependent4,5, and ATP-bound recA protein has a high affinity for DNA, whereas the ADP-bound form has a low affinity6. In the absence of ATP hydrolysis, recA protein can still promote homologous pairing, apparently through the formation of a triple-stranded intermediate1,7–9. The exact role of ATP hydrolysis is not clear, but it presumably drives the triplex intermediate towards products1,9,10. Here we determine the position of bound ADP diffused into the recA crystal. We show that only the phosphates are bound in the same way as in other NTPases containing the G/AXXXXGKT/S motif. We propose that recA protein may change its conformation upon ATP hydrolysis in a manner analogous to one such protein, the p21 protein from theras oncogene. A model is presented to account for the allosteric stimulation of DNA binding by ATP. The mechanism by which nucleoside triphosphate hydrolysis is coupled to the binding of another ligand in recA protein and p21 may be typical of the large class of NTPases containing this conserved motif.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Howard-Flanders, P., West, S. C. & Stasiak, A. Nature 309, 215–220 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Radding, C. M. J. biol. Chem. 266, 5355–5358 (1991).

    CAS  Google Scholar 

  3. Kowalczykowski, S. C. A. Rev. Biophys. biophys. Chem. 20, 539–575 (1991).

    Article  CAS  Google Scholar 

  4. Ogawa, T. et al. Cold Spring Harbor Symp. quant. Biol. 43, 909–915 (1979).

    Article  CAS  Google Scholar 

  5. Roberts, J. W., Roberts, C. W., Craig, N. L. & Phizicky, E. M. Cold Spring Harbor Symp. quant. Biol. 43, 917–920 (1979).

    Article  CAS  Google Scholar 

  6. Menetski, J. P. & Kowalczykowski, S. C. J. molec. Biol. 181, 281–295 (1985).

    Article  CAS  Google Scholar 

  7. Rao, B. J. Dutreix, M. & Radding, C. M. Proc. natn. Acad. Sci. U.S.A. 88, 2984–2988 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Hsieh, P., Camerini-Otero, C. S. & Camerini-Otero, R. D. Genes Dev. 4, 1951–1963 (1990).

    Article  CAS  Google Scholar 

  9. Menetski, J. P., Bear, D. G. & Kowalczykowski, S. C. Proc. natn. Acad. Sci. U.S.A. 87, 21–25 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Rao, B. J., Jwang, B. & Radding, C. M. J. molec. Biol. 213, 789–809 (1990).

    Article  CAS  Google Scholar 

  11. McKay, D. B., Steitz, T. A., Weber, I. T., West, S. C. & Howard-Flanders, P. J. biol. Chem. 255, 6662 (1980).

    CAS  PubMed  Google Scholar 

  12. Knight, K. & McEntree, K. J. biol. Chem. 260, 10185–10191 (1985).

    CAS  PubMed  Google Scholar 

  13. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. EMBO J. 1, 945–951 (1982).

    Article  CAS  Google Scholar 

  14. Higgins, C. F. et al. Nature 323, 448–450 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Linder, P. et al. Nature 337, 121–122 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Dever, T. E., Glynias, M. J. & Merrick, W. C. Proc. natn. Acad. Sci. U.S.A. 84, 1814–1818 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Dreusicke, D., Karplus, P. A. & Schulz, G. E. J. molec. Biol. 199, 359–371 (1988).

    Article  CAS  Google Scholar 

  18. Jurnak, F. Science 230, 32–36 (1985).

    Article  ADS  CAS  Google Scholar 

  19. La Cour, T. F. M., Nyborg, J., Thirup, S. & Clark, B. F. C. EMBO J. 4, 2385–2388 (1985).

    Article  CAS  Google Scholar 

  20. Tong, L., deVos, A. M., Milburn, M. V. & Kim, S.-H. J. molec. Biol. 221, 751–754 (1991).

    Article  Google Scholar 

  21. Rossman, M. G., Moras, D. & Olsen, K. W. Nature 250, 194–199 (1974).

    Article  ADS  Google Scholar 

  22. Mimura, C. S., Holbrook, S. P. & Ames, G. F.-L. Proc. natn. Acad. Sci. U.S.A. 88, 84–88 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Hyde, S. C. et al. Nature 346, 362–365 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Milner-White, E. J., Coggins, J. R. & Anton, I. A. J. molec Biol. 221, 751–754 (1991).

    Article  CAS  Google Scholar 

  25. Gilbert, W. Science 228, 823–824 (1985).

    Article  ADS  CAS  Google Scholar 

  26. Pai, E. F. et al. EMBO J. 9, 2351–2359 (1990).

    Article  CAS  Google Scholar 

  27. Egner, U., Tomasselli, A. G. & Schultz, G. E. J. molec. Biol. 195, 649–658 (1987).

    Article  CAS  Google Scholar 

  28. Story, R. M., Weber, I. T. & Steitz, T. A. Nature 355, 318–325 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Milburn, M. V. et al. Science 247, 939–945 (1990).

    Article  ADS  CAS  Google Scholar 

  30. Roca, A. I. & Cox, M. M. Crit. Rev. Biochem. molec. Biol. 25, 415–456 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Story, R., Steitz, T. Structure of the recA protein–ADP complex. Nature 355, 374–376 (1992). https://doi.org/10.1038/355374a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355374a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing