Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cardioviral internal ribosomal entry site is functional in a genetically engineered dicistronic poliovirus

Abstract

HIGH mutation rates have driven RNA viruses to shorten their genomes to the minimum possible size1. Mammalian (+)-strand RNA viruses and retroviruses have responded by reducing the number of cis-acting regulatory elements, a constraint that has led to the emergence of the polyprotein2. Poliovirus is a (+)-stranded picornavirus whose polyprotein, encoded by an open reading frame spanning most of the viral RNA3, is processed by virus-encoded proteinases4,5. Despite their genetic austerity, picor-naviruses have retained long 5' untranslated regions6–8, which harbour cis-acting elements that promote initiation of translation independently of the uncapped 5' end of the viral messenger RNA9–12. These elements are termed 'internal ribosomal entry sites'10 and are formed from highly structured RNA segments13–15 of at least 400 nucleotides16. How these elements function is not known, but special RNA-binding proteins may be involved17. The ribosome or its 40S subunit probably binds at or near a YnXm AUG motif (where Y is a pyrimidine and X is a purine) at the 3' border of the internal ribosomal entry site17, which either provides the initiating codon16,18 or enables the ribosome to translocate to one downstream (E.W. et al., submitted). Initiation from most eukary-otic messenger RNAs usually occurs by ribosomal recognition of the 5' and subsequent scanning to the AUG codon19. Here we describe a genetic strategy for the dissection of polyproteins which proves that an internal ribosomal entry site element can initiate translation independently of the 5' end.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reanney, D. C. Symp. Soc. gen. Microbiol. 35, 175–196 (1984).

    Google Scholar 

  2. Kräusslich, H.-G. & Wimmer, E. A. Rev. Biochem. 57, 701–754 (1988).

    Article  Google Scholar 

  3. Kitamura, N. et al. Nature 291, 547–553 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Hellen, C. U. T., Kräusslich, H.-G. & Wimmer, E. Biochemistry 28, 9881–9890 (1989).

    Article  CAS  Google Scholar 

  5. Harris, K. S., Hellen, C. U. T. & Wimmer, E. Seminars in Virology Vol. I (ed. Strauss, J. H.) 323–333 (Saunders, Philadelphia, PA, USA, 1990).

    Google Scholar 

  6. Rueckert, R. R. in Virology 2nd edn (eds Fields, B. N. et al.) 507–548 (Raven Press, New York, 1990).

    Google Scholar 

  7. Dorner, A. J., Dorner, L. F., Larsen, G. R., Wimmer, E. & Anderson, C. W. J. Virol. 42, 1017–1028 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Palmenberg, A. C. in Positive Strand RNA Viruses, UCLA Symposia on Molecular and Cellular Biology Vol. 54 (eds Brinton, M. A. & Rueckert, R. R.) 25–34 (A. R. Liss, New York, 1987).

    Google Scholar 

  9. Jang, S. K. et al. J. Virol. 62, 2636–2643 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jang, S. K., Davis, M. V., Kaufman, R. J. & Wimmer, E. J. Virol. 63, 1615–1660 (1989).

    Google Scholar 

  11. Pelletier, J. & Sonenberg, N. Nature 334, 320–325 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Pelletier, J. & Sonenberg, N. J. Virol. 63, 441–444 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pilipenko, E. V. et al. Virology 168, 201–209 (1989).

    Article  CAS  Google Scholar 

  14. Pilipenko, E. V., Blinov, V. M., Chernov, B. K., Dmitrieva, T. M. & Agol, V. I. Nucleic Acids Res. 17, 5701–5711 (1989).

    Article  CAS  Google Scholar 

  15. Skinner, M. A. et al. J. molec. Bid. 207, 379–392 (1989).

    Article  CAS  Google Scholar 

  16. Jang, S. K. & Wimmer, E. Genes Dev. 4, 1560–1572 (1990).

    Article  CAS  Google Scholar 

  17. Jang, S. K., Pestova, T., Hellen, C. U. T., Witherell, G. W. & Wimmer, E. Enzyme 44, 292–309 (1990).

    Article  CAS  Google Scholar 

  18. Kaminski, A., Howell, M. T. & Jackson, R. J. EMBO J. 9, 3753–3759 (1990).

    Article  CAS  Google Scholar 

  19. Kozak, M. J. Cell Biol. 108, 229–241 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Hellen, C. U. T., Fäcke, M., Kräusslich, H.-G., Lee, C.-K. & Wimmer, E. J. Virol. 65, 4226–4231 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nicklin, M. J. H., Kräusslich, H.-G., Toyoda, H., Dunn, J. J. & Wimmer, E. Proc. natn. Acad. Sci. U.S.A. 84, 4002–4006 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Van der Werf, S., Bradley, J., Wimmer, E., Studier, F. W. & Dunn, J. J. Proc. natn. Acad. Sci. U.S.A. 83, 2330–2334 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Molla, A., Paul, A. V. & Wimmer, E. Science 254, 1647–1651 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Kräusslich, H.-G., Nicklin, M. J. H., Toyoda, H., Etchison, D. & Wimmer, E. J. Virol. 61, 2711–2718 (1987).

    PubMed  PubMed Central  Google Scholar 

  25. Davis, B. D., Dulbecco, R., Eisen, H. N. & Ginsberg, H. S. in Microbiology 3rd edn 874–883 (Harper and Row, New York, 1980).

    Google Scholar 

  26. Argos, P., Kramer, G., Nicklin, M. J. H. & Wimmer, E. Nucleic Acids Res. 12, 7251–7267 (1984).

    Article  CAS  Google Scholar 

  27. Sonenberg, N. Curr. Top. Microbiol. Immun. 161, 23–47 (1990).

    CAS  Google Scholar 

  28. Macejak, D. C. & Sarnow, P. Nature 353, 90–94 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Pincus, S. E., Diamond, D. C., Emini, E. A. & Wimmer, E. J. Virol. 57, 638–646 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molla, A., Key Jang, S., Paul, A. et al. Cardioviral internal ribosomal entry site is functional in a genetically engineered dicistronic poliovirus. Nature 356, 255–257 (1992). https://doi.org/10.1038/356255a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356255a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing