Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct homeodomain–DNA interaction in the autoregulation of the fushi tarazu gene

Abstract

A MAJOR problem in the elucidation of the molecular mechanisms governing development is the distinction between direct and indirect regulatory interactions among developmental control genes1–5. In vivo studies have indicated that the Drosophila segmentation genefushi tarazu (ftz) directly or indirectly autoregulates its expression6. Here we describe a generally applicable experimental approach which establishes a direct in vivo interaction of the homeodomain protein ftz with the ftz cis-autoregulatory control region.In vitro studies have shown that the DNA-binding specificity of the ftz homeodomain can be changed by a single amino-acid substitution in the recognition helix (Gin 50 →"Lys)7. Whereas wild-type ftz homeodomain binds preferentially to a CCATTA motif, the mutant homeodomain (ftzQSOK) recognizes a GG ATT A motif. We now find that the in vivo activity of an ftz autoregulatory enhancer element is reduced by mutations of putative ftz-binding sites to GGATTA. This down-regulatory effect is specifically suppressed in vivo by the DNA-binding specificity mutantftzQ5OK. These results establish a direct positive autoregulatory feedback mechanism in the regulation of this homeobox gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. St Johnson, D. & Nüsslein-Volhard, C. Cell 68, 201–219 (1992).

    Article  Google Scholar 

  2. Ingham, P. W. Nature 335, 25–34 (1988).

    Article  ADS  CAS  Google Scholar 

  3. McGinnis, W. & Krumlauf, R. Cell 68, 283–302 (1992).

    Article  CAS  Google Scholar 

  4. Affolter, M., Schier, A. & Gehring, W. J. Curr. Opinion Cell Biol. 2, 1485–1495 (1990).

    Article  Google Scholar 

  5. Hayashi, S. & Scott, M. P. Cell 63, 883–894 (1990).

    Article  CAS  Google Scholar 

  6. Hiromi, Y. & Gehring, W. J. Cell 50, 963–974 (1987).

    Article  CAS  Google Scholar 

  7. Percival-Smith, A., Müller, M., Affolter, M. & Gehring, W. J. EMBO J. 9, 3967–3974 (1990).

    Article  CAS  Google Scholar 

  8. Pick, L., Schier, A., Affolter, M., Schmidt-Glenewinkel, T. & Gehring, W. J. Genes Dev. 4, 1224–1239 (1990).

    Article  CAS  Google Scholar 

  9. Hoey, T. & Levine, M. Nature 332, 858–861 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Desplan, C., Theis, J. & O'Farrell, P. H. Cell 54, 1081–1090 (1988).

    Article  CAS  Google Scholar 

  11. Müller, M. et al. EMBO J. 7, 4299–4304 (1988).

    Article  Google Scholar 

  12. Jarvik, J. & Botstein, D. Proc. natn. Acad. Sci. U.S.A. 72, 2738–2742 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Morris, N. R., Lai, M. H. & Oakley, C. E. Cell 14, 437–442 (1979).

    Article  Google Scholar 

  14. Ebright, R. H. Meth. Enzym. 208, 620–640 (1991).

    Article  CAS  Google Scholar 

  15. Hanes, S. D. & Brent, R. Cell 57, 1275–1283 (1989).

    Article  CAS  Google Scholar 

  16. Hanes, S. D. & Brent, R. Science 251, 426–430 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Treisman, J., Gönczy, P., Vahishtha, M., Harris, E. & Desplan, C. Cell 59, 553–562 (1989).

    Article  CAS  Google Scholar 

  18. Percival-Smith, A., Müller, M., Affolter, M. & Gehring, W. J. EMBO J. 11, 382 (1992).

    Article  CAS  Google Scholar 

  19. Otting, G. et al. EMBO J. 9, 3085–3092 (1990).

    Article  CAS  Google Scholar 

  20. Kissinger, C. R., Liu, B., Martin-Bianco, E., Kornberg, T. B. & Pabo, C. O. Cell 63, 579–590 (1990).

    Article  CAS  Google Scholar 

  21. Driever, W. & Nüsslein-Volhard, C. Nature 337, 138–143 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Hiromi, Y., Kuriowa, A. & Gehring, W. J. Cell 43, 603–613 (1985).

    Article  CAS  Google Scholar 

  23. Jaynes, J. B. & O'Farrell, P. H. Nature 336, 744–749 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Ohkuma, Y., Horikoshi, M., Roeder, R. G. & Desplan, C. Cell 61, 475–484 (1990).

    Article  CAS  Google Scholar 

  25. Harrison, S. D. & Travers, A. A. Nucleic Acids Res. 16, 11403–11416 (1988).

    Article  CAS  Google Scholar 

  26. Maier, D., Preiss, A. & Powell, J. R. EMBO J. 9, 3957–3966 (1990).

    Article  CAS  Google Scholar 

  27. Spradling, A. C. & Rubin, G. M. Science 218, 341–347 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Saiki, R. K. et al. Science 239, 487–491 (1988).

    Article  ADS  CAS  Google Scholar 

  29. Higuchi, R., Krummel, B. & Saiki, R. K. Nucleic Acids Res. 16, 7351–7367 (1988).

    Article  CAS  Google Scholar 

  30. Hoch, M., Seifert, E. & Jäckle, H. EMBO J. 10, 2267–2278 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schier, A., Gehring, W. Direct homeodomain–DNA interaction in the autoregulation of the fushi tarazu gene. Nature 356, 804–807 (1992). https://doi.org/10.1038/356804a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356804a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing