Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs

Abstract

THE glutamate receptor (GluR) channel plays a key part in brain function1,2. Among GluR channel subtypes, the NMDA (JV-methyl-D-aspartate) receptor channel which is highly permeable to Ca2+ is essential for the synaptic plasticity underlying memory, learning and development3,4. Furthermore, abnormal activation of the NMDA receptor channel may trigger the neuronal cell death observed in various brain disorders5,6. A complementary DNA encoding a subunit of the rodent NMDA receptor channel (NMDAR1 or ζ1) has been cloned and its functional properties investigated7,8. Here we report the identification and primary structure of a novel mouse NMDA receptor channel subunit, designated as ɛl, after cloning and sequencing the cDNA. The ɛ l subunit shows 11-18% amino-acid sequence identity with rodent GluR channel subunits that have been characterized so far and has structural features common to neurotransmitter-gated ion channels. Expression from cloned cDNAs of the ɛ I subunit together with the ζ1 subunit in Xenopus oocytes yields functional GluR channels with high activity and characteristics of the NMDA receptor channel. Furthermore, the heteromeric NMDA receptor channel can be activated by glycine alone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mayer, M. L. & Westbrook, G. L. Prog. Neurobiol. 28, 197–276 (1987).

    Article  CAS  Google Scholar 

  2. Monaghan, D. T., Bridges, R. J. & Cotman, C. W. A. Rev. pharmac. Toxicol. 29, 365–402 (1989).

    Article  CAS  Google Scholar 

  3. Collingridge, G. L. & Bliss, T. V. P. Trends Neurosci. 10, 288–293 (1987).

    Article  CAS  Google Scholar 

  4. McDonald, J. W. & Johnston, M. V. Brain Res. Rev. 15, 41–70 (1990).

    Article  Google Scholar 

  5. Choi, D. W. Neuron 1, 623–634 (1988).

    Article  CAS  Google Scholar 

  6. Olney, J. W. A. Rev. pharmac. Toxicol. 30, 47–71 (1990).

    Article  CAS  Google Scholar 

  7. Moriyoshi, K. et al. Nature 354, 31–37 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Yamazaki, M., Mori, H., Araki, K., Mori, K. J. & Mishina, M. FEBS Lett. (in the press).

  9. Sakimura, K. et al. FEBS Lett. 272, 73–80 (1990).

    Article  CAS  Google Scholar 

  10. Morita, T. et al. Molec. Brain Res. (in the press).

  11. Sakimura, K., Morita, T., Kushiya, E. & Mishina, M. Neuron 8, 267–274 (1992).

    Article  CAS  Google Scholar 

  12. Yamazaki, M., Araki, K., Shibata, A. & Mishina, M. Biochem. biophys. Res. Commun. (in the press).

  13. Hollmann, M., O'Shea-Greenfield, A., Rogers, S. W. & Heinemann, S. Nature 342, 643–648 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Keinänen, K. et al. Science 249, 556–560 (1990).

    Article  ADS  Google Scholar 

  15. Bettler, B. et al. Neuron 5, 583–595 (1990).

    Article  CAS  Google Scholar 

  16. Egebjerg, J., Bettler, B., Hermans-Borgmeyer, I. & Heinemann, S. Nature 351, 745–748 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Werner, P., Voigt, M., Keinänen, K., Wisden, W. & Seeburg, P. H. Nature 351, 742–744 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Hollmann, M., Hartley, M. & Heinemann, S. Science 252, 851–853 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Mishina, M. et al. Biochem. biophys. Res. Commun. 180, 813–821 (1991).

    Article  CAS  Google Scholar 

  20. Nakanishi, N., Shneider, N. A. & Axel, R. Neuron 5, 569–581 (1990).

    Article  CAS  Google Scholar 

  21. Pearson, R. B., Woodgett, J. R., Cohen, P. & Kemp, B. E. J. biol. Chem. 260, 14471–14476 (1985).

    CAS  PubMed  Google Scholar 

  22. Johnson, J. W. & Ascher, P. Nature 325, 529–531 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Kleckner, N. W. & Dingledine, R. Science 241, 835–837 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Davies, J., Francis, A. A., Jones, A. W. & Watkins, J. C. Neurosci. Lett. 21, 77–81 (1981).

    Article  CAS  Google Scholar 

  25. Kemp, J. A. et al. Proc. natn. Acad. Sci. U.S.A. 85, 6547–6550 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Nature 307, 462–465 (1984).

    Article  ADS  CAS  Google Scholar 

  27. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Nature 309, 261–263 (1984).

    Article  ADS  CAS  Google Scholar 

  28. Peters, S., Koh, J. & Choi, D. W. Science 236, 589–593 (1987).

    Article  ADS  CAS  Google Scholar 

  29. Westbrook, G. L. & Mayer, M. L. Nature 328, 640–643 (1987).

    Article  ADS  CAS  Google Scholar 

  30. Wong, E. H. F. et al. Proc. natn. Acad. Sci. U.S.A. 83, 7104–7108 (1986).

    Article  ADS  CAS  Google Scholar 

  31. Honoré, T. et al. Eur. J. Pharmac. 172, 239–247 (1989).

    Article  Google Scholar 

  32. Verdoorn, T. A., Burnashev, N., Monyer, H., Seeburg, P. H. & Sakmann, B. Science 252, 1715–1718 (1991).

    Article  ADS  CAS  Google Scholar 

  33. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  34. Yokoyama, S. et al. FEBS Lett. 259, 37–42 (1989).

    Article  CAS  Google Scholar 

  35. Wisden, W., Morris, B. J. & Hunt, S. P. in Molecular Neurobiology (eds Chad, J. & Wheal, H.) 205–225 (IRL, Oxford, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meguro, H., Mori, H., Araki, K. et al. Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357, 70–74 (1992). https://doi.org/10.1038/357070a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357070a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing