Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Principles of locomotion for simple-shaped cells

Abstract

MOVING cells display a variety of shapes and modes of locomotion1, but it is not clear how motility at the molecular level relates to the locomotion of a whole cell, a problem compounded in studies of cells with complex shapes2–5. A striking feature of fish epidermal keratocyte locomotion is its apparent simplicity6. Here we present a kinematic description of locomotion which is consistent with the semicircular shape and persistent 'gliding'; motion of fish epidermal keratocytes. We propose that extension of the front and retraction of the rear of these cells occurs perpendicularly to the cell edge, and that a graded distribution of extension and retraction rates along the cell margin maintains cell shape and size during locomotion. Evidence for this description is provided by the predicted circumferential motion of lamellar features and the curvature of 'photo-marked' lines within specific molecular components of moving keratocytes. Our description relates the dynamics of molecular assemblies to the movement of a whole cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Trinkaus, J. P. in Cells into Organs 179–244 (Prentice Hall, 1984).

    Google Scholar 

  2. Dipasquale, A. Expl. Cell Res. 95, 425–439 (1975).

    Article  CAS  Google Scholar 

  3. Dunn, G. A. in Cell Adhesion and Motility (eds Curtis, A. G. S. & Pitts, J. O.) 409–423 (Cambridge University Press, UK, 1980).

    Google Scholar 

  4. Dunn, G. A., Brown, A. F. J. Cell Sci. suppl. 8, 81–102 (1987).

    Article  CAS  Google Scholar 

  5. De Biosfleury-Chevance, A., Rapp, B. & Gruler, H. Blood Cells 15, 334–342 (1989).

    Google Scholar 

  6. Euteneur, U. & Schliwa, M. Nature 310, 58–61 (1984).

    Article  ADS  Google Scholar 

  7. Theriot, J. A. & Mitchison, T. J. Nature 352, 126–131 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Wang, Y.-L. J. Cell Biol. 101, 597–602 (1985).

    Article  CAS  Google Scholar 

  9. Symons, M. H. & Mitchison, T. J. J. Cell Biol. 114, 503–513 (1991).

    Article  CAS  Google Scholar 

  10. Forscher, P. & Smith, S. J. J. Cell. Biol. 107, 1505–1516 (1988).

    Article  CAS  Google Scholar 

  11. Rinnerthaler, G., Herzog, M., Klappacher, M., Kunka, H. & Small, J. V. J. struct. Biol. 106, 1–16 (1991).

    Article  CAS  Google Scholar 

  12. Kucik, D. F., Elson, E. L. & Sheetz, M. P. Nature 340, 315–317 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Lee, J., Gustaffson, M., Magnusson, K.-E. & Jacobson, K. Science 247, 1229–1233 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Bray, D. & White, J. G. Science 239, 883–888 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Evans, E. & Dembo, M. in Biomechanics of Active Movement and Deformation of Cells (ed. Akkas, N.) 185–214 (Springer, Berlin, 1990).

    Book  Google Scholar 

  16. Bereiter-Hahn, J., Strohmeier, R., Kunzenbacher, I., Beck, K. & Voth, M. J. Cell Sci. 52, 289–311 (1981).

    CAS  PubMed  Google Scholar 

  17. Roberts, T. M. & King, K. L. Cell Motil. Cytoskel. 20, 228–241 (1991).

    Article  CAS  Google Scholar 

  18. Bray, D. & Chapman, K. J. Neurosci. 5, 3204–3213 (1985).

    Article  CAS  Google Scholar 

  19. Gudima, G. O., Vorobjev, I. A. & Chentsov, Y. S. J. Cell Sci. 89, 225–241 (1988).

    PubMed  Google Scholar 

  20. Kolega, J. J. Cell Biol. 102, 1400–1411 (1986).

    Article  CAS  Google Scholar 

  21. Kolega, J. J. Cell Sci. 49, 15–32 (1981).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Ishihara, A., Theriot, J. et al. Principles of locomotion for simple-shaped cells. Nature 362, 167–171 (1993). https://doi.org/10.1038/362167a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362167a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing