Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Radial mosaicism and tangential cell dispersion both contribute to mouse neocortical development

Abstract

THE mammalian neocortex is generated by waves of migrating cells originating from the ventricular zone1,2. Radial migration3 along radial glia4,5 has been proposed as the dominant mechanism for this process. The radial unit hypothesis3 is poorly supported by retroviral lineage studies, however, and although some clones show limited radial organization6, the emphasis appears to be on widespread tangential dispersion7–10. Here we investigate the pattern of cortical cell dispersion using transgenic mice in which roughly half of the brain cells are coloured by a transgene11. We find that the neocortex is randomly divided into diffused bands, the majority of cells within each band have the same colour, and their radial orientation suggests radial dispersion. Superimposed upon this was a significant contribution by tangentially dispersed cells that did not respect clonal borders. These observations indicate that cortical specification is not dependent upon a single mechanism of cell allocation, but that both radial mosaicism and tangential cell migration are involved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Angevine, J. B. & Sidman, R. L. Nature 192, 766–768 (1961).

    Article  ADS  Google Scholar 

  2. Rakic, P. Science 183, 425–427 (1974).

    Article  ADS  CAS  Google Scholar 

  3. Rakic, P. Science 241, 170–176 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Rakic, P. J. comp. Neurol. 141, 283–312 (1971).

    Article  CAS  Google Scholar 

  5. Gadisseuz, J. F., Evrad, P., Misson, J. P. & Caviness, V. S. Jr Devl Brain Res. 50, 55–67 (1989).

    Article  Google Scholar 

  6. Luskin, M. B., Pearlman, A. L. & Sanes, J. R. Neuron 1, 635–647 (1988).

    Article  CAS  Google Scholar 

  7. Walsh, C. & Cepko, C. L. Science 241, 1342–1345 (1988)

    Article  ADS  CAS  Google Scholar 

  8. Austin, C. P. & Cepko, C. L., Development 110, 713–732 (1990).

    CAS  PubMed  Google Scholar 

  9. Price, J. & Thurlow, L. Development 104, 473–482 (1988).

    CAS  PubMed  Google Scholar 

  10. Walsh, C. & Cepko, C. L. Science 255, 434–440 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Tan, S-S., Williams, E. A. & Tam, P. P. L. Nature Genet. 3, 170–174 (1993).

    Article  CAS  Google Scholar 

  12. Monk, M. & Harper, M. I. Nature 281, 311–313 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Gundersen, H. J. G. et al. Acta path. microbiol. immunol. scand. 96, 857–881 (1988).

    Article  CAS  Google Scholar 

  14. O'Rourke, N. A., Dailey, M. E., Smith, S. J. & McConnell, S. K., Science 258, 299–302 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Molnár, Z. & Blakemore, C. Nature 351, 475–477 (1991).

    Article  ADS  Google Scholar 

  16. Schlaggar, B. L. & O'Leary, D. D. M. Science 252, 1556–1560 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Sur, M., Garraghty, P. E. & Roe, A. W. Science 242, 1437–1441 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Mėtin, C. & Frost, D. O. Proc. natn. Acad. Sci. U.S.A. 86, 357–361 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, SS., Breen, S. Radial mosaicism and tangential cell dispersion both contribute to mouse neocortical development. Nature 362, 638–640 (1993). https://doi.org/10.1038/362638a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362638a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing