Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatial calcium buffering in saccular hair cells

Abstract

THE potential importance of intracellular calcium-binding proteins in rapid and highly localized Ca2+ signalling is poorly understood. During fast synaptic transmission, which occurs at specialized active zones where Ca2+ diffuses only a few tens of nanometres from channels to neurotransmitter release sites1, a cytoplasmic Ca2+ buffer would have to be extremely fast or present in millimolar concentrations to intercept a significant fraction of the calcium ions en route to their targets2–5. Therefore, Ca2+ buffers have been presumed to be unimportant in fast exocytosis1,6,7 and another fast calcium-mediated process, electrical resonance in hair cells4,8. Here I present evidence to the contrary by showing that hair cells in the frog sacculus contain millimolar concentrations of a mobile cytoplasmic calcium buffer that captures Ca2+ within a few microseconds after it enters through presynaptic Ca2+ channels and carries it away from the point of entry. This spatial buffering reduces the presynaptic free Ca2+ by up to 60 per cent and probably restricts the region in which the internal calcium ion concentration exceeds 1 μM to within <250 nm of each synaptic site. The buffer can thus influence both electrical resonance and synaptic transmission. Calbindin-D28K or a related protein may serve as the mobile calcium buffer, an action similar to its function in transporting Ca2+ across intestinal epithelial cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smith, S. J. & Augustine, G. J. Trends Neurosci. 11, 458–464 (1988).

    Article  CAS  Google Scholar 

  2. Kutchai, H., Jacquez, J. A. & Mather, F. J. Biophys. J. 10, 38–54 (1970).

    Article  CAS  Google Scholar 

  3. Neher, E. in Calcium Electrogenesis and Neuronal Functioning (eds Heinemann, U., Klee, M., Neher, E. & Singer, W.) 80–96 (Springer, Berlin, 1986).

    Book  Google Scholar 

  4. Roberts, W. M., Jacobs, R. A. & Hudspeth, A. J. J. Neurosci. 10, 3664–3684 (1990).

    Article  CAS  Google Scholar 

  5. Feher, J. J., Fullmer, C. S. & Wasserman, R. H. Am. J. Physiol. 262, C517–C526 (1992).

  6. Connor, J. A. & Nikolakopoulou, G. Lect. Math. Life Sci. 15, 79–101 (1982).

    CAS  Google Scholar 

  7. Sala, F. & Hernández-Cruz A. Biophys. J. 57, 313–324 (1990).

    Article  CAS  Google Scholar 

  8. Roberts, W. M., Jacobs, R. A. & Hudspeth, A. J. Ann. N. Y. Acad Sci. 635, 221–233 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Fettiplace, R. Trends Neurosci. 10, 421–425 (1987).

    Article  Google Scholar 

  10. Hudspeth, A. J. & Lewis, R. S. J. Physiol. 400, 237–274 (1988).

    Article  CAS  Google Scholar 

  11. Hudspeth, A. J. & Lewis, R. S. J. Physiol. 400, 275–297 (1988).

    Article  CAS  Google Scholar 

  12. Roberts, W. M. Soc. Neurosci. Abstr. 17, 1486 (1991).

    Google Scholar 

  13. Roberts, W. M. & Hagedorn, M. Biophys. J. 61, A142 (1992).

    Google Scholar 

  14. Korn, S. J., Marty, A., Connor, J. A. & Horn, R. Meth. Neurosci. 4, 364–373 (1991).

    Article  Google Scholar 

  15. Tsien, R. Y. Biochemistry 19, 2396–2404 (1980).

    Article  CAS  Google Scholar 

  16. Adler, E. M., Augustine, G. J., Duffy, S. N. & Charlton, M. P. J. Neurosci. 11, 1496–1507 (1991).

    Article  CAS  Google Scholar 

  17. Simon, S. M. & Linás, R. R. Biophys. J. 48, 485–498 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Bronner, F. Am. J. Physiol. 257, F707–F711 (1989).

    CAS  PubMed  Google Scholar 

  19. Feher, J. J., Fullmer, C. S. & Fritzsch, G. K. Cell Calcium 10, 189–203 (1989).

    Article  CAS  Google Scholar 

  20. Speksnijder, J. E., Miller, A. L., Weisenseel, M. H., Chen, T.-H. & Jaffe, L. F. Proc. natn. Acad. Sci. U.S.A. 86, 6607–6611 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Mattson, M. P., Rychlik, B., Chu, C. & Christakos, S. Neuron 6, 41–51 (1991).

    Article  CAS  Google Scholar 

  22. Leathers, V. L., Linse, S., Forsén, S. & Norman, A. W. J. biol. Chem. 265, 9838–9841 (1990).

    CAS  PubMed  Google Scholar 

  23. Shepherd, G. M. G., Barres, B. A. & Corey, D. P. Proc. natn. Acad. Sci. U.S.A. 86, 4973–4977 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Gillespie, P. G. & Hudspeth, A. J. J. Cell Biol. 112, 625–640 (1991).

    Article  CAS  Google Scholar 

  25. Dechesne, C. J., Thomasset, M., Brehier, A. & Sans, A. Hearing Res. 33, 273–278 (1988).

    Article  CAS  Google Scholar 

  26. Oberholtzer, J. C., Buettger, C., Summers, M. C. & Matschinsky, F. M. Proc. natn. Acad. Sci. U.S.A. 85, 3387–3390 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Baimbridge, K. G., Miller, J. J. & Parkes, C. O. Brain Res. 239, 519–525 (1981).

    Article  Google Scholar 

  28. Neher, E. & Augustine, G. J. J. Physiol. 450, 273–301 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, W. Spatial calcium buffering in saccular hair cells. Nature 363, 74–76 (1993). https://doi.org/10.1038/363074a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363074a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing