Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees

Abstract

DURING classical conditioning, animals learn to associate a neutral stimulus with a meaningful, or unconditioned, stimulus. The unconditioned stimulus is essential for forming associations, and modifications in the processing of the unconditioned stimulus are thought to underlie more complex learning forms1–4. Information on the neuronal representation of the unconditioned stimulus is therefore required for understanding both basic and higher-order features of conditioning. In honeybees, conditioning of the proboscis extension reflex occurs after a single pairing of an odour (conditioned stimulus) with food (unconditioned stimulus)5,6 and shows several higher-order features of conditioning6–8. I report here the identification of an interneuron that mediates the unconditioned stimulus in this associative learning. Its physiology is also compatible with a function in complex forms of associative learning. This neuron provides the first direct access to the cellular mechanisms underlying the reinforcing properties of the unconditioned stimulus pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rescorla, R. A. A. Rev. Neurosci. 11, 329–352 (1988).

    Article  CAS  Google Scholar 

  2. Rescorla, R. A. & Wagner, A. R. in Classical Conditioning II: Current Research and Theory (eds Black, A. H. & Prokasy, W. F.) 64–99 (Appleton-Century-Crofts, New York, 1972).

    Google Scholar 

  3. Wagner, A. R. in Information Processing in Animals: Memory Mechanisms (eds Spear, N. E. & Miller, R. R.) 5–47 (Erlbaum, Hillsdale, N J, 1981).

    Google Scholar 

  4. Hawkins, R. D. & Kandel, E. R. Psychol. Rev. 91, 375–391 (1984).

    Article  CAS  Google Scholar 

  5. Menzel, R. & Bitterman, M. E. in Neuroethology and Behavioral Physiology (eds Huber, F. & Markel, H.) 206–215 (Springer, Berlin, 1988).

    Google Scholar 

  6. Menzel, R. in Nerobiology of Comparative Cognition (eds Kesner, R. P. & Olton, D. S.) 237–292 (Erlbaum, Hillsdale, NJ, 1990).

    Google Scholar 

  7. Bitterman, M. E., Menzel, R., Fietz, A. & Schäfer, S. J. comp. Physiol. A97, 107–119 (1983).

    CAS  Google Scholar 

  8. Smith, B. H. J. exp. Biol. 161, 367–382 (1991).

    Google Scholar 

  9. Arnold, G., Masson, C. & Budharugsa, S. Cell Tissue Res. 242, 593–605 (1985).

    Article  Google Scholar 

  10. Mobbs, P. Phil. Trans. R. Soc. B298, 309–354 (1982).

    Article  Google Scholar 

  11. Menzel, R., Greggers, U. & Hammer, M. in Insect Learning: Ecological and Evolutionary Perceptives (eds Papaj, D. R. & Lewis, A. C.) 79–125 (Chapman & Hall, New York, London, 1993).

    Book  Google Scholar 

  12. Rehder, V. J. Insect Physiol. 33, 303–311 (1987).

    Article  Google Scholar 

  13. Mackey, S. L., Kandel, E. R. & Hawkins, R. D. J. Neurosci. 9, 4227–4235 (1989).

    Article  CAS  Google Scholar 

  14. Mauk, M. D., Steinmetz, J. E. & Thompson, R. F. Proc. natn. Acad. Sci. U.S.A. 83, 5349–5353 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Farley, J. Behavl Neurosci. 101, 28–56 (1987).

    Article  CAS  Google Scholar 

  16. Erber, J., Mazur, T. & Menzel, R. Physiol. Entomol. 5, 343–358 (1980).

    Article  Google Scholar 

  17. Mauelshagen, J. J. Neurophysiol. 69, 609–625 (1993).

    Article  CAS  Google Scholar 

  18. Heisenberg, M., Borst, A., Wagner, S. & Byers, D. J. Neurogenet. 2, 1–30 (1985).

    Article  CAS  Google Scholar 

  19. Balling, A., Technau, G. M. & Heisenberg, M. J. Neurogenet. 4, 65–73 (1987).

    Article  CAS  Google Scholar 

  20. Nighorn, A., Healy, M. J. & Davis, R. L. Neuron 6, 455–467 (1991).

    Article  CAS  Google Scholar 

  21. Han, P.-L., Levin, L. R., Reed, R. R. & Davis, R. L. Neuron 9, 619–627 (1992).

    Article  CAS  Google Scholar 

  22. Buonomano, D. V., Baxter, D. A. & Byrne, J. H. Neural Networks 3, 507–523 (1990).

    Article  Google Scholar 

  23. Hawkins, R. D. in Computational Models of Learning in Simple Neural Systems (eds Hawkins, R. D. & Bower, G. H.) 65–108 (Academic, San Diego, 1989).

    Book  Google Scholar 

  24. Rybak, J. & Menzel, R. J. comp. Neurol., 334, 444–465 (1993).

    Article  CAS  Google Scholar 

  25. Rehder, V. J. comp. Neurol. 279, 499–513 (1989).

    Article  CAS  Google Scholar 

  26. Strausfeld, N. Atlas of an Insect Brain (Springer, Berlin, Heidelberg, New York, 1976).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammer, M. An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366, 59–63 (1993). https://doi.org/10.1038/366059a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366059a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing