Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons

Abstract

EACH neuron in the mammalian brain carries many postsynaptic membrane specializations containing high densities of receptors that mediate signal transduction upon neurotransmitter release from the apposed nerve terminal1. Little is known about the mechanisms by which receptors are transported to and anchored at postsynaptic sites, but extracellular2 as well as intracellular3 components may be involved. Ultrastructural studies have shown that the peripheral membrane protein gephyrin4, which co-purifies with the postsynaptic inhibitory glycine receptor (GlyR) upon affinity chromatography5,6, is situated on the cytoplasmic face of glycinergic postsynaptic membranes7–9. Moreover, gephyrin binds with high affinity to polymerized tubulin and has been postulated to link the GlyR to the subsynaptic cytoskeleton10. Here we report that treatment of rat spinal neurons in culture with gephyrin antisense oligonucleotides prevents the formation of GlyR clusters in the dendritic plasma membrane. Thus, gephyrin is essential for localizing the GlyR to presumptive postsynaptic plasma membrane specializations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Peters, A., Palay, S. L. & Webster, H. de F. The Fine Structure of the Nervous System (Oxford Univ. Press, Oxford, 1992).

    Google Scholar 

  2. McMahan, U. J. & Wallace, B. G. Devl Neurosci. 11, 227–247 (1989).

    Article  CAS  Google Scholar 

  3. Froehner, S. C. A. Rev. Neurosci. 16, 347–368 (1993).

    Article  CAS  Google Scholar 

  4. Prior, P. et al. Neuron 8, 1161–1170 (1992).

    Article  CAS  Google Scholar 

  5. Pfeiffer, F., Graham, D. & Betz, H. J. biol. Chem. 257, 9389–9393 (1982).

    CAS  PubMed  Google Scholar 

  6. Schmitt, B., Knaus, P., Becker, C. -M. & Betz, H. Biochemistry 26, 805–811 (1987).

    Article  CAS  Google Scholar 

  7. Triller, A., Cluzeaud, F., Pfeiffer, F., Betz, H. & Korn, H. J. Cell Biol. 101, 683–688 (1985).

    Article  CAS  Google Scholar 

  8. Altschuler, R. A., Betz, H., Parakkal, M., Reeks, K. & Wenthold, R. Brain Res. 369, 316–320 (1986).

    Article  CAS  Google Scholar 

  9. Triller, A., Cluzeaud, F. & Korn, H. J. Cell Biol. 104, 947–956 (1987).

    Article  CAS  Google Scholar 

  10. Kirsch, J. et al. J. biol. Chem. 266, 22242–22245 (1991).

    CAS  PubMed  Google Scholar 

  11. Hoch, W., Betz, H. & Becker, C.-M. Neuron 3, 339–348 (1990).

    Article  Google Scholar 

  12. Bormann, J., Hamill, O. P. & Sakmann, B. J. Physiol., Lond. 385, 243–286 (1987).

    Article  CAS  Google Scholar 

  13. Nicola, M.-A., Becker, C.-M. & Triller, A. Neurosci. Lett. 138, 173–178 (1992).

    Article  CAS  Google Scholar 

  14. Pfeiffer, F., Simler, R., Grenningloh, G. & Betz, H. Proc. natn. Acad. Sci. U.S.A. 81, 7224–7227 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Sealock, R., Wray, B. & Froehner, S. C. J. Cell Biol. 98, 2239–2244 (1984).

    Article  CAS  Google Scholar 

  16. Bridgman, P. C., Carr, C., Pedersen, S. E. & Cohen, J. B. J. Cell Biol. 105, 1829–1846 (1989).

    Article  Google Scholar 

  17. Nghiem, H. O. et al. Proc. natn. Acad. Sci. U.S.A. 80, 6403–6407 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Froehner, S. C., Luetje, C. W., Scotland, P. B. & Patrick, J. Neuron 5, 403–410 (1990).

    Article  CAS  Google Scholar 

  19. Phillips, W. D. et al. Science 251, 568–570 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Walker, J. H., Boustead, C. M. & Witzemann, V. EMBO J. 3, 2287–2296 (1984).

    Article  CAS  Google Scholar 

  21. Bloch, R. J. J. Cell Biol. 102, 1447–1458 (1986).

    Article  CAS  Google Scholar 

  22. LaRochelle, W. J., Witzemann, V., Fiedler, W. & Froehner, S. C. J. Neurosci. 10, 3460–3467 (1990).

    Article  CAS  Google Scholar 

  23. Stephens, R. E. Biol. Cell 57, 95–110 (1986).

    Article  CAS  Google Scholar 

  24. Jasmin, B. J., Changeux, J.-P. & Cartaud, J. Nature 344, 673–675 (1991).

    Article  ADS  Google Scholar 

  25. Blomberg, F., Cohen, R. S. & Siekevitz, P. J. Cell Biol. 74, 204–225 (1977).

    Article  CAS  Google Scholar 

  26. Hirokawa, N. & Heuser, J. E. J. Neurocytol. 11, 487–510 (1982).

    Article  CAS  Google Scholar 

  27. Kirsch, J. & Betz, H. Brain Res. 621, 301–310 (1993).

    Article  CAS  Google Scholar 

  28. Kirsch, J., Malosio, M.-L., Wolters, I. & Betz, H. Eur. J. Neurosci. 5, 1109–1117 (1993).

    Article  CAS  Google Scholar 

  29. Kirsch, J., Zutra, A. & Littauer, U. Z. J. Neurochem. 55, 1031–1041 (1990).

    Article  CAS  Google Scholar 

  30. Becker, C.-M., Hoch, W. & Betz, H. J. Neurochem. 53, 124–131 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirsch, J., Wolters, I., Triller, A. et al. Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature 366, 745–748 (1993). https://doi.org/10.1038/366745a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366745a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing