Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sequence of C. elegans lag-2 reveals a cell-signalling domain shared with Delta and Serrate of Drosophila

Abstract

THE lin-12 and glp-1 genes of Caenorhabditis elegans encode members of the Notch family of transmembrane proteins1,2. Genetic studies indicate that the lin-12 and glp-1 proteins act as receptors in specific developmental cell interactions3–6 and that their functions are partially redundant7, lin-12 glp-1 double mutants display certain embryonic defects not found in either single mutant7,8. The phenotype of this double mutant is called Lag, and recessive mutations in either of the genes lag-1 or lag-2 can also result in the Lag phenotype7, indicating that these two genes may participate in the same cell interactions that require lin-12 or glp-1. We report here that lag-2 encodes a predicted transmembrane protein of 402 amino acids. The predicted extracellular region of lag-2 is similar to amino-terminal regions of Delta and Serrate, two Drosophila proteins that are thought to function as ligands for Notch9–14. The region of similarity includes sequences related to epidermal growth factor (EGF) repeats. We have isolated lag-2(sa37), a dominant allele that shows specific genetic interactions with lin-12. The sa37 mutation causes a Gly->Asp change in a conserved residue of an EGF motif. Because of its overall structure, its sequence similarity to Delta and Serrate, and its genetic interactions, we suggest that lag-2 encodes an intercellular signal for the lin-12 and glp-1 receptors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yochem, J. & Greenwald, I. Cell 58, 553–563 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Austin, J. & Kimble, J. Cell 58, 565–571 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Greenwald, I. S., Sternberg, P. W. & Horvitz, H. R. Cell 34, 435–444 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Priess, J. R., Schnabel, H. & Schnabel, R. Cell 51, 601–611 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Austin, J. & Kimble, J. Cell 51, 589–599 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Seydoux, G. & Greenwald, I. Cell 57, 1237–1245 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Lambie, E. J. & Kimble, J. Development 112, 231–240 (1991).

    CAS  PubMed  Google Scholar 

  8. Bowerman, B., Tax, F. E., Thomas, J. H. & Priess, J. R. Development 116, 1113–1122 (1992).

    CAS  PubMed  Google Scholar 

  9. Vassin, H., Bremer, K. A., Knust, E. & Campos-Ortega, J. A. EMBOJ. 6, 3431–3440 (1987).

    Article  Google Scholar 

  10. Kopczynski, C. C., Alton, A. K., Fechtel, K., Kooh, P. J. & Muskavitch, M. A. T. Genes Dev. 2, 1723–1735 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Fleming, R. J., Scottgale, T. N., Diederich, R. J. & Artavanis-Tsakonas, S. Genes Dev. 4, 2188–2201 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Thomas, U., Speicher, S. A. & Knust, E. Development 111, 749–761 (1991).

    CAS  PubMed  Google Scholar 

  13. Fehon, R. G. et al. Cell 61, 523–534 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Rebay, I. et al. Cell 67, 687–699 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Appella, E., Weber, I. T. & Blasi, F. FEBS Lett. 231, 1–4 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Wharton, K. A., Johansen, K. M., Xu, T. & Artavanis-Tsakonas, S. Cell 43, 567–581 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Rogers, S., Wells, R. & Reichsteiner, M. Science 234, 364–368 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Greenwald, I. & Seydoux, G. Nature 346, 197–199 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Heitzler, P. & Simpson, P. Development 117, 1113–1123 (1993).

    CAS  PubMed  Google Scholar 

  20. Seydoux, G., Schedl, T. & Greenwald, I. Cell 51, 939–951 (1990).

    Article  Google Scholar 

  21. Coffman, C., Harris, W. & Kintner, C. Science 249, 1438–1441 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Heitzler, P. & Simpson, P. Cell 64, 1083–1092 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Kooh, P. J., Fehon, R. G. & Muskavitch, M. A. T. Development 117, 493–507 (1993).

    CAS  PubMed  Google Scholar 

  24. Johnsen, R. C., & Baillie, D. L. Genetics 129, 735–752 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosenbluth, R. E. & Baillie, D. L. Genetics 99, 415–428 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sambrook, J., Fritsch, E. F. & Maniatis, T., Molecular Cloning: A Laboratory Manual 2nd edn (Cold Spring Habor Laboratory Press, New York, 1989).

    Google Scholar 

  27. Mello, C. C., Kramer, J. M., Stinchcomb, D. T. & Ambros, V. EMBOJ. 10, 3959–3970 (1991).

    Article  CAS  Google Scholar 

  28. DeLong, L., Casson, L. D. & Meyer, B. J. Genetics 117, 657–670 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Loh, Y. P., Brownstein, M. J. & Gainer, H. A. Rev. Neurosci. 7, 189–222 (1984).

    Article  CAS  Google Scholar 

  30. Sanger, F., Nicklen, S. & Coulson, A. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  31. Altschul, S. F. & Lipman, D. J. Proc. natn. Acad. Sci. USA. 87, 5509–5513 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tax, F., Yeargers, J. & Thomas, J. Sequence of C. elegans lag-2 reveals a cell-signalling domain shared with Delta and Serrate of Drosophila. Nature 368, 150–154 (1994). https://doi.org/10.1038/368150a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368150a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing