Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Essential role of Mash-2 in extraembryonic development

Abstract

THE outer layer of the blastocyst, or trophectoderm, is the first cell lineage to differentiate in the mouse embryo1,2, but little is known about the genetic control of its development. Lineage-specific transcription factors may be important in lineage specification, and the product of the Mash-2 gene3,4 fulfils the criteria for such a factor. Mash-2 is a mammalian member of the achaete-scute family5–7 which encodes basic-helix–loop–helix transcription factors8 and is strongly expressed in the extraembryonic tropho-blast lineage. Mash-2 transcripts are found in the female germ line and in the embryo throughout preimplantation development, but are highly expressed later only in the ectoplacental cone, the chor-ion and their derivatives in the placenta. Mash-2 transcripts are not found in primary and secondary giant cells, yolk sac or allantois at any post-implantation stage, and are present only transiently and at low levels in the embryo during gastrulation. To analyse the role of Mash-2 in development, we have used gene targeting to generate mice having no Mash-2 function. We report here that Mash-2-/- embryos die from placental failure at 10 days post-coitum. In mutant placentas, spongiotrophoblast cells and their precursors are absent and chorionic ectoderm is reduced. We have rescued this placental mutant phenotype by constructing chimaeras with tetraploid wild-type embryos which contribute almost exclusively to extraembryonic tissues9,10. Mash-2-/- embryos developed normally and adult Mash-2-/- mice were viable, demonstrating that Mash-2 has no major role in the embryo itself. Mash-2 is the first transcription factor shown to play a critical part in the development of the mammalian trophoblast lineage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rossant, J. in Experimental Approaches to Mammalian Embryonic Development (eds Rossant, J. & Pedersen, R. A.) 97–120 (Cambridge Univ. Press, New York, 1986).

    Google Scholar 

  2. Kaufman, M. H. in Biology of Trophoblast (eds Loke, Y. W. & White, A.) 23–68 (Elsevier, Amsterdam, 1983).

    Google Scholar 

  3. Johnson, J. E., Birren, S. J. & Anderson, D. J. Nature 346, 858–861 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Guillemot, F. & Joyner, A. L. Mech. Dev. 42, 171–185 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Villares, R. & Cabrera, C. V. Cell 50, 415–424 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Ghysen, A. & Dambly-Chaudiere, C. Genes Dev. 2, 495–501 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Campuzano, S. & Modolell, J., Trends Genet. 8, 202–208 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Murre, C., Schonleber McCaw, P. & Baltimore, D. Cell 56, 777–783 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Nagy, A. et al. Development 110, 815–822 (1990).

    CAS  PubMed  Google Scholar 

  10. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. C. Proc. natn. Acad. Sci. U.S.A. 90, 8424–8428 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Lescisin, K. R., Varmuza, S. & Rossant, J. Genes Dev. 2, 1639–1646 (1989).

    Article  Google Scholar 

  12. Finnerty, H. et al. Oncogene 8, 2293–2298 (1993).

    CAS  PubMed  Google Scholar 

  13. Colosi, P., Swiergiel, J. J., Wilder, E. L., Oviedo, A. & Linzer, D. I. H. Molec. Endocr. 2, 579–586 (1987).

    Article  Google Scholar 

  14. Linzer, D. I. H., Lee, S.-J., Ogren, L., Talamantes, F. & Nathans D. Proc. natn. Acad. Sci. U.S.A. 81, 4356–4359 (1985).

    Article  ADS  Google Scholar 

  15. Mano, H., Ishikawa, F., Nishida, J., Hirai, H. & Takaku, F. Oncogene 5, 1781–1786 (1990).

    CAS  PubMed  Google Scholar 

  16. Ferrara, N., Houck, K. A., Jakeman, L. B., Winer, J. & Leung, D. W. J. cell. Biochem. 47, 211–218 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Nagy, A. & Rossant, J. in Gene Targeting: A Practical Approach (ed. Joyner, A. L.) 147–180 (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  18. Guillemot, F. et al. Cell 75, 463–476 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Mansour, S. L., Thomas, K. R. & Capecchi, M. R. Nature 336, 348–352 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Wurst, W. & Joyner, A. L. in Gene Targeting: A Practical Approach (ed. Joyner A. L), 31–62 (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillemot, F., Nagy, A., Auerbach, A. et al. Essential role of Mash-2 in extraembryonic development. Nature 371, 333–336 (1994). https://doi.org/10.1038/371333a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371333a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing