Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structural basis of specific base-excision repair by uracil–DNA glycosylase

Abstract

The 1.75-Å crystal structure of the uracil-DNA glycosylase from herpes simplex virus type-1 reveals a new fold, distantly related to dinucleotide-binding proteins. Complexes with a trideoxynucleotide, and with uracil, define the DNA-binding site and allow a detailed understanding of the exquisitely specific recognition of uracil in DNA. The overall structure suggests binding models for elongated single- and double-stranded DNA substrates. Conserved residues close to the uracil-binding site suggest a catalytic mechanism for hydrolytic base excision.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lindahl, T. Proc. natn. Acad. Sci. U.S.A. 71, 3649–3653 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Kaboev, O. K., Luchinka, L. A. & Kuziakina, T. I. J. Bact. 164, 421–424 (1985).

    CAS  PubMed  Google Scholar 

  3. Crosby, B., Prakash, L., Davis, H. & Hinkle, D. C. Nucleic Acids Res. 9, 5797–5809 (1981).

    Article  CAS  Google Scholar 

  4. Olsen, L. C., Aasland, R., Wittwer, C. U., Krokan, H. E. & Helland, D. E. EMBO J. 9, 3121–3125 (1989).

    Article  Google Scholar 

  5. Upton, C., Stuart, D. T. & McFadden, G. Proc. natn. Acad. Sci. U.S.A. 90, 4518–4522 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Mullaney, J., Moss, H. W. McL. & McGeogh, D. J. J. gen. Virol. 70, 449–454 (1989).

    Article  CAS  Google Scholar 

  7. Caradonna, S., Worrad, D. & Lirette, R. J. Virol. 61, 3040–3047 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Baer, R. et al. Nature 310, 207–211 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Davison, A. J. & Scott, J. E. J. gen. Virol. 67, 1759–1816 (1986).

    Article  CAS  Google Scholar 

  10. Cone, R., Duncan, J., Hamilton, L. & Friedberg, E. C. Biochemistry 16, 3194–3201 (1977).

    Article  CAS  Google Scholar 

  11. Lindahl, T., Ljungquist, S., Siegert, W., Nyberg, B. & Sperens, B. J. biol. Chem. 252, 3286–3294 (1977).

    CAS  Google Scholar 

  12. Dianov, G. et al. Nucleic Acids Res. 22, 993–998 (1994).

    Article  CAS  Google Scholar 

  13. Lindahl, T. Prog. Nucleic Acid Res. molec. Biol. 22, 135–192 (1979).

    CAS  Google Scholar 

  14. Mosbaugh, D. W. Rev. biochem. Tox. 9, 69–130 (1988).

    Google Scholar 

  15. Verri, A., Mazzarello, P., Biamonti, G., Spadari, S. & Focher, F. Nucleic Acids Res. 18, 5775–5780 (1990).

    Article  CAS  Google Scholar 

  16. Focher, F., Verri, A., Verzeletti, S., Mazzarello, P. & Spadari, S. Chromosoma. Berl. 102 (Suppl.), S67–S71 (1992).

    Article  CAS  Google Scholar 

  17. Slupphaug, G. et al. Nucleic Acids Res. 21, 2579–2584 (1993).

    Article  CAS  Google Scholar 

  18. Mauro, D. J., De Reil, J. K., Tallarida, R. J. & Sirover, M. A. Molec. Pharmac. 43, 854–857 (1993).

    CAS  Google Scholar 

  19. Hatahet, Z., Kow, Y. W., Purmal, A. A., Cunningham, R. P. & Wallace, S. S. J. biol. Chem. 269, 18814–18820 (1994).

    CAS  PubMed  Google Scholar 

  20. Eftedal, I., Guddal, P. H., Slupphaug, G., Volden, G. & Krokan, H. E. Nucleic Acids Res. 21, 2095–2101 (1993).

    Article  CAS  Google Scholar 

  21. Cone, R., Duncan, J., Hamilton, L. & Friedberg, E. C. Biochemistry 16, 3194–3201 (1977).

    Article  CAS  Google Scholar 

  22. Lindahl, T., Ljungquist, S., Siegert, W., Nyberg, B. & Sperens, B. J. biol. Chem. 252, 3286–3294 (1977).

    CAS  Google Scholar 

  23. Krokan, H. & Wittwer, C. U. Nucleic Acids Res. 9, 2599–2613 (1981).

    Article  CAS  Google Scholar 

  24. Pyles, R. B. & Thompson, R. L. J. Virol. 68, 4963–4972 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sawa, R. & Pearl, L. H. J. molec. Biol. 234, 910–912 (1993).

    Article  Google Scholar 

  26. Rossman, M. G. et al. in The Enzymes Vol. 11 (ed. Boyer, P. D.) 61–102 (Academic, NewYork, 1975).

    Google Scholar 

  27. Klimasaukas, S., Kumar, S., Roberts, R. J. & Cheng, X. Cell 76, 357–369 (1994).

    Article  Google Scholar 

  28. Bennet, S. E., Jensen, O. N., Barofsky, D. F. & Mosbaugh, D. W. J. biol. Chem. 269, 21870–21879 (1994).

    Google Scholar 

  29. Krokan, H. E. et al. Proc. N.Y. Acad. Sci. (Abstr.) (July 31-Aug. 4, Burlington, VT, 1993).

  30. Varshney, U. & van de Sande, J. H. Biochemistry 30, 4055–4061 (1991).

    Article  CAS  Google Scholar 

  31. Leslie, A. G. W. MOSFLM Users Guide (MRC-LMB, Cambridge, 1994).

    Google Scholar 

  32. Pflugrath, J. W. & Messerschmidt, A. Munich Area Detector New EEC System (1992).

    Google Scholar 

  33. Collaborative Computational Project No. 4. Acta crystallogr. D50, 760–763 (1994).

  34. Otwinowski, Z. in Isomorphous Replacement and Anomalous Scattering: Proceedings of the CCP4 Study Weekend 23–38 (SERC Daresbury Laboratory, 1991).

    Google Scholar 

  35. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Acta crystallogr. A47, 110–119 (1991).

    Article  Google Scholar 

  36. Kleywegt, G. J. & Jones, T. A. in From First Map to Final Model: Proceedings of the CCP4 Study Weekend (eds Bailey, S. et al.) 59–66 (SERC Daresbury Laboratory, 1994).

    Google Scholar 

  37. Read, R. J. Acta crystallogr. A42, 140–149 (1986).

    Article  Google Scholar 

  38. Brunger, A. T. X-PLOR Version 3.1. A System for X-Ray Crystallography and NMR (Yale Univ. Press, New Haven, CT, 1992).

  39. Laskowski, R. J., MacArthur, M. W., Moss, D. S. & Thornton, J. M. J. Appl. crystallogr. 26, 283–290 (1993).

    Article  CAS  Google Scholar 

  40. Kraulis, P. J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  41. Flores, T., Moss, D. S. & Thornton, J. M. Protein Engng 7, 31–37 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savva, R., McAuley-Hecht, K., Brown, T. et al. The structural basis of specific base-excision repair by uracil–DNA glycosylase. Nature 373, 487–493 (1995). https://doi.org/10.1038/373487a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/373487a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing