Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli

Abstract

MIDBRAIN dopamine systems are crucially involved in motivational processes underlying the learning and execution of goal-directed behaviour1–5. Dopamine neurons in monkeys are uniformly activated by unpredicted appetitive stimuli such as food and liquid rewards and conditioned, reward-predicting stimuli. By contrast, fully predicted stimuli are ineffective6–8, and the omission of predicted reward depresses their activity9. These characteristics follow associative-learning rules10,11, suggesting that dopamine responses report an error in reward prediction12. Accordingly, neural network models are efficiently trained using a dopamine-like reinforcement signal13,14. However, it is unknown whether the responses to environmental stimuli concern specific motivational attributes or reflect more general stimulus salience4,15. To resolve this, we have compared dopamine impulse responses to motivationally opposing appetitive and aversive stimuli. In contrast to appetitive events, primary and conditioned non-noxious aversive stimuli either failed to activate dopamine neurons or, in cases of close resemblance with appetitive stimuli, induced weaker responses than appetitive stimuli. Thus, dopamine neurons preferentially report environmental stimuli with appetitive rather than aversive motivational value.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Beninger, R. J. & Hahn, B. L. Science 220, 1304–1306 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Fibiger, H. C. & Phillips, A. G. in Handbook of Physiology—The Nervous System IV, (ed. Bloom,F. E.) 647–675 (Williams and Wilkins, Baltimore, 1986).

    Google Scholar 

  3. Wise, R. A. & Rompre, P. P. A. Rev. Psychol. 40, 191–225 (1989).

    Article  CAS  Google Scholar 

  4. Robbins, T. W. & Everitt, B. J. Sem. Neurosci. 4, 119–128 (1992).

    Article  Google Scholar 

  5. Robinson, T. E. & Berridge, K. C. Brain Res. Rev. 18, 247–291 (1993).

    Article  CAS  Google Scholar 

  6. Romo, R. & Schultz, W. J. Neurophysiol. 63, 592–606 (1990).

    Article  CAS  Google Scholar 

  7. Ljungberg, T., Apicella, P. & Schultz, W. J. Neurophysiol. 67, 145–163 (1992).

    Article  CAS  Google Scholar 

  8. Mirenowicz, J. & Schultz, W. J. Neurophysiol. 72, 1024–1027 (1994).

    Article  CAS  Google Scholar 

  9. Schultz, W., Apicella, P. & Ljungberg, T. J. Neurosci. 13, 900–913 (1993).

    Article  CAS  Google Scholar 

  10. Rescorla, R. A. & Wagner, A. R. in Classical Conditioning II: Current Research and Theory (eds Black, A. H, & Prokasy, W. F.) 64–99 (Appleton Century Crofts, New York, 1972).

    Google Scholar 

  11. Dickinson, A. Contemporary Animal Learning Theory (Cambridge Univ. Press, Cambridge,1980).

    Google Scholar 

  12. Schultz, W. et al. in Models of Information Processing in the Basal Ganglia (eds Houk, J. C.,Davis, J. L & Beiser, D. G.) 233–248 (MIT Press, Cambridge,MA, 1995).

    Google Scholar 

  13. Sutton, R. S. & Barto, A. G. Psychol. Rev. 88, 135–170 (1981).

    Article  CAS  Google Scholar 

  14. Friston, K. J., Tononi, G., Reeke, G. N., Sporns, O. & Edelman, G. M. Neuroscience 59, 229–243 (1994).

    Article  CAS  Google Scholar 

  15. Schultz, W. Sem. Neurosci. 4, 129–138 (1992).

    Article  Google Scholar 

  16. Schultz, W. & Romo, R. J. Neurophysiol. 57, 201–217 (1987).

    Article  CAS  Google Scholar 

  17. DeLong, M. R., Crutcher, M. D. & Georgopoulos, A. P. J. Neurosci. 3, 1599–1606 (1983).

    Article  CAS  Google Scholar 

  18. Schultz, W., Ruffieux, A. & Aebischer, P. Expl Brain Res. suppl. 7, 171–181 (1983).

    Article  Google Scholar 

  19. Chergui, K., Suaud-Chagny, M. F. & Gonon, F., Neuroscience 62, 641–645 (1994).

    Article  CAS  Google Scholar 

  20. Freund, T. F., Powell, J. F. & Smith, A. D. Neuroscience 13, 1189–1215 (1984).

    Article  CAS  Google Scholar 

  21. Goldman-Rakic, P. S., Leranth, C., Williams, M. S., Mons, N. & Geffard, M. Proc. natn. Acad. Sci.U.S.A. 86, 9015–9019 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Louilot, A., LeMoal, M. & Simon, H. Brain Res. 397, 395–400 (1986).

    Article  CAS  Google Scholar 

  23. Church, W. H., Justice, J. B. & Neill, D. B. Brain Res. 412, 397–399 (1987).

    Article  CAS  Google Scholar 

  24. Abercrombie, E. D., Keefe, K. A., DiFrischia, D. S. & Zigmond, M. J. J. Neurochem. 52, 1655–1658 (1989).

    Article  CAS  Google Scholar 

  25. Young, A. M., Joseph, M. H. & Gray, J. A. Neuroscience 48, 871–876 (1992).

    Article  CAS  Google Scholar 

  26. Garris P. A., Ciolkowski, E. L. & Wightman, R. M. Neuroscience 59, 417–427 (1994).

    Article  CAS  Google Scholar 

  27. Yung, K. K. L. et al. Neuroscience 65, 709–730 (1995).

    Article  CAS  Google Scholar 

  28. Gaffan, D. & Harrison, S. J. Neurosci. 7, 2285–2292 (1987).

    CAS  PubMed  Google Scholar 

  29. Cador, M., Robbins, T. W. & Everitt, B. J. Neuroscience 30, 77–86 (1989).

    Article  CAS  Google Scholar 

  30. Nishijo, H., Ono, T. & Nishino, H. J. Neurosci. 8, 3570–3583 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirenowicz, J., Schultz, W. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379, 449–451 (1996). https://doi.org/10.1038/379449a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379449a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing