Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

From DNA sequence to biological function

Genome sequencing is leading to the discovery of new genes at a rate 50–100 times greater than that achieved by classical genetics, but the biological function of almost half of these genes is completely unknown. In order fully to exploit genome sequence data, a systematic approach to the discovery of gene function is required. Possible strategies are discussed here in the context of functional analysis in the yeast Saccfiaromyces cerevisiae, a model eukaryote whose genome sequence will soon be completed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Fleischmann, R. D. et al. Science 269, 538–540 (1995).

    Article  ADS  Google Scholar 

  2. Blattner, F., Daniels, D. L., Burland, V. D., Plunkett, G. & Chang, S. in The Chromosome (eds Heslop-Harrison, J. S. & Flavell, R. B.) 43–59 (ßios, Oxford, 1993).

    Google Scholar 

  3. Devine, K. Trends Biotechn. 13, 210–216 (1995).

    Article  CAS  Google Scholar 

  4. Oliver, S. G., James, C. M., Gent, M. E. & Indge, K. J. in The Chromosome (eds Heslop-Harrison, J. S. & Flavell, R. B.) 233–248 (ßios, Oxford, 1993).

    Google Scholar 

  5. Sulston, J. et al. Nature 356, 37–41 (1992).

    Article  ADS  Google Scholar 

  6. Schmidt, R. & Dean, C. Bioessays 15, 63–69 (1993).

    Article  CAS  Google Scholar 

  7. Havukkala, I., Ichimura, H., Nagamura, Y. & Sasaki, T. J. Biotech. 41, 139–148 (1995).

    Article  CAS  Google Scholar 

  8. Olson, M. V. Proc. natn. Acad. Sci. U.S.A. 90, 4338–4344 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Wilson, R. et al. Nature 368, 32–38 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Oliver, S. G. et al. Nature 357, 38–46 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Dujon, B. et al. Nature 369, 371–378 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Johnston, M. et al. Science 265, 2077–2082 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Feldmann, H. et al. EMBO J. 13, 5795–5809 (1994).

    Article  CAS  Google Scholar 

  14. Bussey, H. et al. Proc. natn. Acad. Sci. U.S.A. 92, 3809–3813 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Murkamai, Y. et al. Nature Genet. 10, 261–268 (1995).

    Article  Google Scholar 

  16. Adams, M. D. et al. Science 252, 1651–1656 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Waterston, R. & Sulston, J. Nature 376, 111 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Olson, M. V. in The Molecular and Cellular Biology of the Yeast Saccharomyces cerevisiae (eds Broach, J. R., Pringle, J. R. & Jones, E. W.) 1–39 (Cold Spring Harbor Laboratory, New York, 1991).

    Google Scholar 

  19. Rothstein, R. J. Meth. Enzym. 101, 202–211 (1983).

    Article  CAS  Google Scholar 

  20. Kaback, D. B., Angerer, L. M. & Davidson, N. Nucleic Acids Res. 6, 2499–2517 (1979).

    Article  CAS  Google Scholar 

  21. Goebl, M. E. & Petes, T. D. Cell 46, 983–992 (1986).

    Article  CAS  Google Scholar 

  22. Craig, E. A., Gambill, B. D. & Nelson, R. J. Microbiol. Rev. 57, 402–413 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tatchell, K., Robinson, L. C. & Breitenbach, M. Proc. natn. Acad. Sci. U.S.A. 82, 3785–3789 (1985).

    Article  ADS  CAS  Google Scholar 

  24. Mortimer, R. K. & Johnston, J. R. Genetics 113, 35–43 (1989).

    Google Scholar 

  25. Hammond, J. R. M. in The Yeasts Vol. 5 (eds Rose, A. H. & Harrison, J. S.) 7–67 (Academic, London, 1993).

    Book  Google Scholar 

  26. Rendueles, P. S. & Wolf, D. H. FEMS Microbiol. Rev. 54, 17–46 (1988).

    Article  Google Scholar 

  27. Lalo, D., Stettler, S., Mariotte, S., Slonimski, P. P. & Thuriaux, P. Compt. Rend. Acad. Sci. (III) 316, 137–143 (1993).

    Google Scholar 

  28. Lin, Y. S., Kieser, H. M., Hopwood, D. A. & Chen, C. W. Molec. Microbiol. 10, 923–933 (1993).

    Article  CAS  Google Scholar 

  29. Chadwick, D. J. & Whelan, J. (eds) Secondary Metabolites: Their Function and Evolution (CIBA Foundation Symposium 171), (Wiley, Chichester, 1992).

  30. Chater, K. F. in Regulation of Prokaryotic Development (eds Smith, I. Slepecky, R. A. & Setlow, P.) 277–299 (Am. Soc. Microbiol., Washington, 1989).

    Google Scholar 

  31. Jia, Y. thesis, Univ. Pierre et Marie Curie, Paris (1993).

  32. Zheng, L., White, R. H., Cash, V. L., Jack, R. F. & Dean, D. R. Proc. natn. Acad. Sci. U.S.A. 90, 2754–2758 (1958).

    Article  ADS  Google Scholar 

  33. Sun, D. & Setlow, P. J. Bact. 175, 1423–1432 (1993).

    Article  CAS  Google Scholar 

  34. Mehta, P. K. & Christen, P. Eur. J. Biochem. 211, 373–376 (1993).

    Article  CAS  Google Scholar 

  35. Ouzunis, C. & Sander, C. FEBS Lett. 322, 159–164 (1993).

    Article  Google Scholar 

  36. Leong-Morgenthaler, P., Oliver, S. G., Hottinger, H. & Söll, D. Biochimie 76, 45–49 (1994).

    Article  CAS  Google Scholar 

  37. Burns, N. et al. Genes Dev. 8, 1087–1105 (1994).

    Article  CAS  Google Scholar 

  38. Dang, V.-D., Valens, M., Bolotin-Fukuhara, M. & Daignan-Fornier, B. Yeast 10, 1273–1283 (1994).

    Article  CAS  Google Scholar 

  39. Casadaban, M. J. & Cohen, S. N. Proc. natn. Acad. Sci. U.S.A. 76, 4530–4533 (1979).

    Article  ADS  CAS  Google Scholar 

  40. Olesen, J., Hahn, S. & Guarente, L. Cell 51, 953–961 (1987).

    Article  CAS  Google Scholar 

  41. De Winde, J. H. & Grivell, L. A. Progr. nucleic Acids Res. 46, 51–91 (1992).

    Article  Google Scholar 

  42. Yoshikawa, A. & Isono, K. Yeast 6, 383–401 (1990).

    Article  CAS  Google Scholar 

  43. Tanaka, S. & Isono, K. Nucleic Acids Res. 21, 1149–1153 (1992).

    Article  Google Scholar 

  44. Weinstock, K. G., Kirkness, E. F., Lee, N. H., Earle-Hughes, J. A. & Venter, J. C. Curr. Opin. Biotech. 5, 599–603 (1994).

    Article  CAS  Google Scholar 

  45. Kreudtzfeldt, C. & Witt, W. in Saccharomyces (eds Tuite, M. F. & Oliver, S. G.) Biotech. Handbooks Vol. 4, 5–58 (Plenum, New York, 1991).

    Book  Google Scholar 

  46. Rieger, K., Orlowska, G., Kaniak, A., Aljinovic, G. & Slonimski, P. P. Yeast (in the press).

  47. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. Nucleic Acids Res. 21, 3329–3330 (1993).

    Article  CAS  Google Scholar 

  48. Wach, A., Brachat, A., Pöhlmann, R. & Philippsen, P. Yeast 10, 1793–1808 (1995).

    Article  Google Scholar 

  49. Kacser, H. & Burns, J. A. Symp. Soc. exp. Biol. 32, 65–104 (1973).

    Google Scholar 

  50. Heinrich, R. & Rapoport, T. A. Eur. J. Biochem. 42, 89–95 (1974).

    Article  CAS  Google Scholar 

  51. Quant, P. A. Trends biochem. Sci. 18, 26–30 (1993).

    Article  CAS  Google Scholar 

  52. Dulbecco, R. Gene 135, 259–260 (1993).

    Article  CAS  Google Scholar 

  53. Short, N. Nature 377 (suppl), l (1995).

    Google Scholar 

  54. Tugendreich, S., Bassett, D. E. Jr, McKusick, V. A., Boguski, M. S. & Hieter, P. Human molec. Genet. 3, 1509–1517 (1994).

    Article  CAS  Google Scholar 

  55. Bassett, D. E. Jr, Boguski, M. S. & Hieter, P. Nature 379, 589–590 (1996).

    Article  ADS  CAS  Google Scholar 

  56. Davies, J. L. et al. Nature 371, 130–136 (1994).

    Article  ADS  CAS  Google Scholar 

  57. Bodmer, W., Bishop, T. & Karran, P. Nature Genet. 6, 217–219 (1994).

    Article  CAS  Google Scholar 

  58. Ward, R. in Hypertension: Pathophysiology, Diagnosis and Management (eds Laragh, J. H. & Brenner, B. M.) 81–100 (Raven, New York, 1990).

    Google Scholar 

  59. Schwartz, K. Nature Genet. 8, 110–111 (1994).

    Article  CAS  Google Scholar 

  60. Lander, E. S. & Schork, N. J. Science 265, 2037–2048 (1994).

    Article  ADS  CAS  Google Scholar 

  61. Chien, C. T., Bartel, P. L., Sterngianz, R. & Fields, S. Proc. natn. Acad. Sci. U.S.A. 88, 9578–9582 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliver, S. From DNA sequence to biological function. Nature 379, 597–600 (1996). https://doi.org/10.1038/379597a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/379597a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing