Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus

Abstract

VISUAL responses in the retina and the lateral geniculate nucleus (LGN) exhibit oscillatory patterning within a broad range of frequencies1–9. Oscillatory activity is often associated with the synchronization of spatially distributed responses10. Here we demonstrate, with simultaneous multi-electrode recordings from the retina and the LGN, that stationary and moving light stimuli evoke in retinal ganglion cells oscillatory responses in the frequency range of 61 to 114 Hz that become synchronized over distances larger than 20 degrees of visual angle across the nasal and temporal halves of the retina. This temporal patterning of retinal responses is transmitted reliably by LGN neurons, such that stimuli crossing the vertical meridian evoke synchronous responses in the LGNs of both hemispheres. The oscillatory responses are not phase-locked to the stimulus onset, indicating that synchronization results from horizontal interactions in the retina. The occurrence of synchronization depends on global stimulus properties such as size and continuity, suggesting that temporal correlation among responses of spatially segregated ganglion cells can be exploited to convey information relevant for perceptual grouping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Doty, R. W. & Kimura, D. S. J. Physiol., Lond. 168, 205–218 (1963).

    Article  CAS  Google Scholar 

  2. Bishop, P. O., Levick, W. R. & Williams, W. O. J. Physiol., Lond. 170, 598–612 (1964).

    Article  CAS  Google Scholar 

  3. Laufer, M. & Verzeano, M. Vision Res. 7, 215–229 (1967).

    Article  CAS  Google Scholar 

  4. Arnett, D. W. Expl Brain Res. 24, 111–130 (1975).

    Article  CAS  Google Scholar 

  5. Robson, J. G. & Troy, J. B. J. opt. Soc. Am. A4, 2301–2307 (1992).

    Article  Google Scholar 

  6. Ghose, G. M. & Freeman, R. D. J. Neurophysiol. 68, 1558–1574 (1992).

    Article  CAS  Google Scholar 

  7. Nuñez, A. K., Amzica, F. & Steriade, M. Neuroscience 51, 269–284 (1992).

    Article  Google Scholar 

  8. Ito, H., Gray, C. M. & Di Frisco, G. V. Soc. Neurosci. Abstr. 20, 61.7(1994).

    Google Scholar 

  9. Wörgötter, F. & Funke, K. Visual Neurosci. 12, 469–484 (1995).

    Article  Google Scholar 

  10. Singer, W. & Gray, C. M. A. Rev. Neurosci. 18, 555–586 (1995).

    Article  CAS  Google Scholar 

  11. Perkel, D. H., Gerstein, G. L. & Moore. G. P. Biophys. J. 7, 419–440 (1967).

    Article  CAS  Google Scholar 

  12. Gerstein, G. L. & Perkel, D. H. Biophys. J. 12, 453–473 (1972).

    Article  ADS  CAS  Google Scholar 

  13. Sillito, A. M., Jones, H. E., Gerstein, G. L. & West, D. C. Nature 369, 479–482 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Stevens, J. K. & Gerstein, G. L. J. Neurophysiol. 39, 239–256 (1976).

    Article  CAS  Google Scholar 

  15. Rodieck, R. W. J. Neurophysiol. 30, 1043–1071 (1967).

    Article  CAS  Google Scholar 

  16. Arnett, D. W. Expl Brain Res. 32, 49–53 (1978).

    Article  CAS  Google Scholar 

  17. Arnett, D. & Spraker, T. E. J. Physiol., Lond 317, 29–47 (1981).

    Article  CAS  Google Scholar 

  18. Mastronarde, D. N. Trends Neurosci. 12, 75–80 (1989).

    Article  CAS  Google Scholar 

  19. Wässle, H. & Boycott, B. B. Physiol. Rev. 71, 447–480 (1991).

    Article  Google Scholar 

  20. DeVries, S. H. & Baylor, D. A. Cell 10, (suppl.), 1390–1349 (1993).

    Google Scholar 

  21. Vaney, D. I. Prog. retin. Eye Res. 13, 301–355 (1994).

    Article  Google Scholar 

  22. Cook, J. E. & Becker, D. L. Microsc. Res. Tech. 31, 408–419 (1995).

    Article  CAS  Google Scholar 

  23. Engel, A. K., König, P., Kreiter, A. K. & Singer, W. Science 252, 1177–1179 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Engel, A. K., König, P., Gray, C. M. & Singer, W. Eur. J. Neurosci. 2, 588–606 (1990).

    Article  Google Scholar 

  25. König, P. J. Neurosci. Meth. 54, 31–37 (1994).

    Article  Google Scholar 

  26. Peichl, L. & Wässle, H. J. Physiol., Lond. 291, 117–141 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuenschwander, S., Singer, W. Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature 379, 728–733 (1996). https://doi.org/10.1038/379728a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379728a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing