Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Estimate of the genomic mutation rate deleterious to overall fitness in E. coll

Abstract

MUTATIONS are a double-edged sword: they are the ultimate source of genetic variation upon which evolution depends, yet most mutations affecting fitness (viability and reproductive success) appear to be harmful1. Deleterious mutations of small effect can escape natural selection, and should accumulate in small populations2–4. Reduced fitness from deleterious-mutation accumulation may be important in the evolution of sex5–7, mate choice8,9, and diploid life-cycles10, and in the extinction of small populations11,12. Few empirical data exist, however. Minimum estimates of the genomic deleterious-mutation rate for viability in Drosophila melanogaster are surprisingly high1,13,14, leading to the conjecture that the rate for total fitness could exceed 1.0 mutation per individual per generation5,6. Here we use Escherichia coli to provide an estimate of the genomic deleterious-mutation rate for total fitness in a microbe. We estimate that the per-microbe rate of deleterious mutations is in excess of 0.0002.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Crow, J. F. & Simmons, M. J. in The Genetics and Biology of Drosophila Vol. 3C (eds Ashburner, M., Carson, H. L. & Thompson, J. N.) 1–35 (Academic, London, 1983).

    Google Scholar 

  2. Charlesworth, D., Morgan, M. T. & Charlesworth, B. Genet. Res. Camb. 61, 39–56 (1993).

    Article  Google Scholar 

  3. Haigh, J. Theor. Pop. Biol. 14, 251–267 (1978).

    Article  CAS  Google Scholar 

  4. Lynch, M. & Gabriel, W. Evolution 44, 1725–1737 (1990).

    Article  Google Scholar 

  5. Muller, H. J. Mut. Res. 1, 1–9 (1964).

    Article  Google Scholar 

  6. Kondrashov, A. S. Nature 336, 435–440 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Charlesworth, B. Genet. Res. Camb. 55, 199–221 (1990).

    Article  CAS  Google Scholar 

  8. Charlesworth, B. in Sexual Selection: Testing the Alternatives (eds Bradbury, J. W. & Andersson, M. B.) 21–40 (Wiley, Chichester, 1987).

    Google Scholar 

  9. Kirkpatrick, M. & Ryan, M. J. Nature 350, 33–38 (1991).

    Article  ADS  Google Scholar 

  10. Jenkins, C. D. & Kirkpatrick, M. Evolution 49, 512–520 (1995).

    Article  Google Scholar 

  11. Lynch, M., Burger, R., Butcher, D. & Gabriel, W. J. Heredity 84, 339–344 (1993).

    Article  CAS  Google Scholar 

  12. Lande, R. Evolution 48, 1460–1469 (1994).

    Article  Google Scholar 

  13. Mukai, T. in Quantitative Genetic Variation (eds Thompson, J. N. & Thoday, J. M.) 177–196 (Academic, New York, 1979).

    Book  Google Scholar 

  14. Keightley, P. D. Genetics 138, 1315–1322 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hartl, D. L., Moriyama, E. N. & Sawyer, S. A. Genetics 138, 227–234 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Drake, J. W. Proc. natn. Acad. Sci. U.S.A. 88, 7160–7164 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Am. Nat. 138, 1315–1341 (1991).

    Article  Google Scholar 

  18. Lenski, R. E. & Travisano, M. Proc. natn. Acad. Sci. U.S.A. 91, 6808–6814 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Herdman, M. in The Evolution of Genome Size (ed. Cavalier-Smith, T.) 37–68 (Wiley, London, 1985).

    Google Scholar 

  20. Cavalier-Smith, T. in The Evolution of Genome Size (ed. Cavalier-Smith, T.) 69–104 (Wiley, London, 1985).

    Google Scholar 

  21. Lindsley, D. L. & Tokuyasy, K. T. in The Genetics and Biology of Drosophila (eds Asburner, M. & Wright, T.) 226–294 (Academic, New York, 1980).

    Google Scholar 

  22. Carlton, B. C. & Brown, B. J. in Manual of Methods for General Bacteriology (ed. Gerhardt, P.) 222–242 (Am. Soc. Microbiol., Washington DC, 1981).

    Google Scholar 

  23. Bateman, A. J. Int. J. Rad. Biol. 170–180 (1959).

  24. Lynch, M. in Ecological Genetics (ed. Real, L.) 86–108 (Princeton Univ. Press, Princeton, New Jersey, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kibota, T., Lynch, M. Estimate of the genomic mutation rate deleterious to overall fitness in E. coll. Nature 381, 694–696 (1996). https://doi.org/10.1038/381694a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381694a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing