Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Timing of neurotransmission at fast synapses in the mammalian brain

Abstract

UNDERSTANDING the factors controlling synaptic delays has broad implications. On a systems level, the speed of synaptic transmission limits the communication rate between neurons and strongly influences local circuit dynamics1,2. On a molecular level, the delay from presynaptic calcium entry to postsynaptic responses constrains the molecular mechanism of vesicle fusion3. Previously it has not been possible to elucidate the determinants of synaptic delays in the mammalian central nervous system, where presynaptic terminals are small and difficult to study. We have developed a new approach to study timing at rat cerebellar synapses: we used optical techniques to measure voltage and calcium current simultaneously from presynaptic boutons while monitoring postsynaptic currents electrically4–6. Here we report that the classic view that vesicle release is driven by calcium entry during action-potential repolarization7 holds for these synapses at room temperature, but not at physiological temperatures, where postsynaptic responses commence just 150 μs after the start of the presynaptic action potential. This brisk communication is a consequence of rapid calcium-channel kinetics, which allow significant calcium entry during the upstroke of the presynaptic action potential, and extremely fast calcium-driven vesicle fusion, which lags behind calcium influx by 60 μs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hopfield, J. J. Nature 376, 33–36 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Stratford, K. J., Tarczy-Hornoch, K., Martin, K. A. C., Bannister, N. J. & Jack, J. J. B. Nature 382, 258–261 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Schweizer, F. E., Betz, H. & Augustine, G. J. Neuron 14, 689–696 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Regehr, W. G. & Tank, D. W. J. Neurosci. Meth. 37, 111–119 (1991).

    Article  CAS  Google Scholar 

  5. Regehr, W. G. & Atluri, P. P. Biophys. J. 68, 2156–2170 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sabatini, B. L. & Regehr, W. G. Neuropharmacology 34, 1453–1467 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Kandel, E. R., Schwartz, J. H. & Jessell, T. M. Principles of Neural Science (Elsevier, New York, 1991).

    Google Scholar 

  8. Llinas, R., Steinberg, I. Z. & Walton, K. Biophys. J. 33, 323–352 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Llinas, R., Sugimori, M. & Simon, S. M. Proc. Natl Acad. Sci. USA 79, 2415–2419 (1982).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Augustine, G. J., Charlton, M. P. & Smith, S. J. J. Physiol. (Lond.) 369, 163–181 (1985).

    Article  Google Scholar 

  11. Appenteng, K., Conyers, L. & Moore, J. A. J. Physiol. (Lond.) 417, 91–104 (1989).

    Article  CAS  Google Scholar 

  12. Oertel, D. J. Neurosci. 3, 2043–2053 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barbour, B., Keller, B. U., Llano, I. & Marty, A. Neuron 12, 1331–1343 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Palay, S. L. & Chan-Palay, V. Cerebellar Cortex (Springer, New York, 1974).

    Book  Google Scholar 

  15. Neher, E. Neuropharmacology 34, 1423–1442 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Kao, J. P. Y. & Tsien, R. Y. Biophys. J. 53, 635–639 (1988).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Delbono, O. & Stefani, E. J. Physiol. (Lond.) 463, 689–707 (1993).

    Article  CAS  Google Scholar 

  18. Zhao, M., Hollingworth, S. & Baylor, S. M. Biophys. J. 70, 896–916 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wheeler, D. B., Randall, A. & Tsien, R. W. J. Neurosci. 16, 2226–2237 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pfrieger, F. W., Veselovsky, N. S., Gottmann, K. & Lux, H. D. J. Neurosci. 12, 4347–4357 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Atluri, P. P. & Regehr, W. G. J. Neurosci. 16, 5661–5671 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  PubMed  Google Scholar 

  23. Nobile, M., Carbone, E., Lux, H. D. & Zucker, H. Pflugers Arch. 415, 658–663 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Taylor, W. R. J. Physiol. (Lond.) 407, 405–432 (1988).

    Article  ADS  CAS  Google Scholar 

  25. McAllister-Williams, R. H. & Kelly, J. S. Neuropharmacology 34, 1479–1490 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Hodgkin, A. L. & Katz, B. J. Physiol. (Lond.) 109, 240–249 (1949).

    Article  CAS  Google Scholar 

  27. Heidelberger, R., Heinemann, C., Neher, E. & Matthews, G. Nature 371, 513–515 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Konnerth, A., Obaid, A. L. & Salzberg, B. M. J. Physiol. (Lond.) 393, 681–702 (1987).

    Article  CAS  Google Scholar 

  29. Loew, L M., Cohen, L. B., Salzberg, B. M., Obaid, A. L. & Bezanilla, F. Biophys. J. 47, 71–77 (1985).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kocsis, J. D., Malenka, R. C. & Waxman, S. G. J. Physioi. (Lond.) 334, 225–244 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabatini, B., Regehr, W. Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384, 170–172 (1996). https://doi.org/10.1038/384170a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384170a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing