Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Elasticity and unfolding of single molecules of the giant muscle protein titin

Abstract

The giant muscle protein titin, also called connectin, is responsible for the elasticity of relaxed striated muscle, as well as acting as the molecular scaffold for thick-filament formation1,2. The titin molecule consists largely of tandem domains of the immuno-globulin and fibronectin-III types, together with specialized binding regions and a putative elastic region, the PEVK domain3. We have done mechanical experiments on single molecules of titin to determine their visco-elastic properties, using an optical-tweezers technique. On a fast (0.ls) timescale titin is elastic and force–extension data can be fitted with standard random-coil polymer models, showing that there are two main sources of elasticity: one deriving from the entropy of straightening the molecule; the other consistent with extension of the polypeptide chain in the PEVK region. On a slower timescale and above a certain force threshold, the molecule displays stress-relaxation, which occurs in rapid steps of a few piconewtons, corresponding to yielding of internal structures by about 20 nm. This stress-relaxation probably derives from unfolding of immu-noglobulin and fibronectin domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Trinick, J. Cytoskeleton: titin as a scaffold and spring. Curr. Biol. 6, 258–260 (1996).

    Article  CAS  Google Scholar 

  2. Maruyama, K. Connectin, an elastic protein of striated muscle. Biophys. Chem. 50, 73–85 (1994).

    Article  CAS  Google Scholar 

  3. Labeit, S. & Kolmerer, B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270, 293–296 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Linke, W. A. et al. Towards a molecular understanding of the elasticity of titin. J. Mol. Biol. 261, 62–71 (1996).

    Article  CAS  Google Scholar 

  5. Gautel, M. & Goulding, D. A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series. FEBS Lett. 385, 11–14 (1996).

    Article  CAS  Google Scholar 

  6. Higuchi, H., Nakauchi, Y., Maruyama, K. & Fujime, S. Characterization of α-connectin from striated muscle by dynamic light scattering. Biophys. J. 65, 1906–1915 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Wang, K., McCarter, R., Wright, J., Beverly, J. & Ramirez-Mitchell, R. Viscoelasticity of the sarcomere matrix of skeletal-muscles: the titin-myosin composite filament is a dual-stage molecular spring. Biophys. J. 64, 1161–1177 (1993).

    Article  CAS  Google Scholar 

  8. Soteriou, A., Clarke, A., Martin, S. & Trinick, J. Titin folding energy and elasticity. Proc. R. Soc. Land. B 254, 83–86 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Erickson, H. P. Reversible unfolding of fibronectin type-III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. Proc. Natl Acad. Sci. USA 91, 10114–10118 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Politou, A. S., Thomas, D. J. & Pastore, A. The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity. Biophys. J. 69, 2601–2610 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Flory, P. J. in Statistical Mechanics of Chain Molecules 316–304 (Hanser, Munich, 1989).

    Google Scholar 

  12. Fixman, M. & Kovac, J. Polymer conformational statistics. III. Modified Gaussian models of stiff chains. J. Chem. Phys. 56, 1564–1568 (1973).

    Article  ADS  Google Scholar 

  13. Kellermayer, M. S. Z. & Granzier, H. L. Elastic properties of single titin molecules made visible through fluorescent F-actin binding. Biochem. Biophys. Res. Comm. 221, 491–497 (1996).

    Article  CAS  Google Scholar 

  14. Linke, W. A., Bartoo, M. I., Ivemeyer, M. & Pollack, G. H. Limits of titin extension in single cardiac myofibrils. J. Muscle Res. Cell Motil. 17, 425–438 (1996).

    Article  CAS  Google Scholar 

  15. Politou, A. S., Gautel, M., Pfuhl, M., Labeit, S. & Pastore, A. Immunoglobulin-type domains of titin: same fold, different stability? Biochemistry 33, 4730–4737 (1994).

    Article  CAS  Google Scholar 

  16. Fong, S. et al. Structure and stability of an immunoglobulin superfamily domain from twitchin, a muscle protein of the nematode Caenorhabditis elegans. J. Mol. Biol. 264, 624–639 (1996).

    Article  CAS  Google Scholar 

  17. Litvinovich, S. V., Novokhatny, V. V., Brew, S. A. & Ingram, K. C. Reversible unfolding of an isolated heparin and DNA binding fragment, the first type III module from fibronectin. Biochim. Biophys. Acta 1119, 57–62 (1992).

    Article  CAS  Google Scholar 

  18. Plaxco, K. W., Spitzfaden, C., Campbell, I. D. & Dobson, C. M. Rapid refolding of a proline-rich all-beta-sheet fibronectin type-Ill module. Proc. Natl Acad. Sci. USA 93, 10703–10706 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Soteriou, A., Gamage, M. & Trinick, J. A survey of the interactions made by the giant protein titin. J. Cell Sci. 104, 119–123 (1993).

    CAS  PubMed  Google Scholar 

  20. Whiting, J., Wardale, J. & Trinick, J. Does titin regulate the length of muscle thick filaments. J. Mol. Biol. 205, 263–268 (1989).

    Article  CAS  Google Scholar 

  21. Fürst, D. O., Osborn, M., Nave, R. & Weber, K. The organisation of titin filaments in the half-sarcomere revealed by monoclonal-antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z-line extends close to the M-line. J. Cell Biol. 106, 1563–1572 (1988).

    Article  Google Scholar 

  22. Simmons, R. M., Finer, J. T,, Chu, S. & Spudich, J. A. Quantitative measurements of force and displacement using an optical trap. Biophys. J. 70, 1813–1822 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Bustamante, C. Entropic elasticity of λ-phage DNA. Science 265, 1599–1600 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Tskhovrebova, L. & Trinick, J. Direct visualization of extensibility in isolated titin molecules. J. Mol. Biol. 265, 100–106 (1997).

    Article  CAS  Google Scholar 

  25. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin Ig-domains by AFM. Science (in the press).

  26. Kellermayer, M. S. Z., Smith, S. B., Granzier, H. L. & Bustamante, C. Folding-unfolding transitions in single titin molecules characterized with force-measuring laser tweezers. Science (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tskhovrebova, L., Trinick, J., Sleep, J. et al. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387, 308–312 (1997). https://doi.org/10.1038/387308a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387308a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing