Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells

Abstract

Mutation of the XRCC4 gene in mammalian cells1,2 prevents the formation of the signal and coding joints in the V(D)J recombination reaction3, which is necessary for production of a functional immunoglobulin gene, and renders the cells highly sensitive to ionizing radiation4. However, XRCC4 shares no sequence homology with other proteins, nor does it have a biochemical activity to indicate what its function might be2. Here we show that DNA ligase IV (ref. 5) co-immunoprecipitates with XRCC4 and that these two proteins specifically interact with one another in a yeast two-hybrid system. Ligation of DNA double-strand breaks in a cell-free system by DNA ligase IV is increased fivefold by purified XRCC4 and seven- to eightfold when XRCC4 is co-expressed with DNA ligase IV. We conclude that the biological consequences of mutating XRCC4 are primarily due to the loss of its stimulatory effect on DNA ligase IV: the function of the XRCC4–DNA ligase IV complex may be to carry out the final steps of V(D)J recombination and joining of DNA ends.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional characterization of stable XRCC4 transfectants.
Figure 2: Immunoprecipitation (IP) of epitope-tagged XRCC4.
Figure 3: Adenylation of recombinant and endogenous DNA ligase IV.
Figure 4: XRCC4 stimulates DNA ligase IV activity in vitro.

Similar content being viewed by others

References

  1. Stamato, T. D., Weinstein, R., Giaccia, A. & Mackenzie, L. Isolation of cell-cycle dependent gamma-ray sensitive Chinese hamster ovary cell. Somat. Cell Mol. Genet. 9, 165–173 (1983).

    Article  CAS  Google Scholar 

  2. Li, Z. et al. The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. Cell 83, 1079–1089 (1996).

    Article  Google Scholar 

  3. Taccioli, G. E. et al. Impairment of V(D)J recombination in double-strand break repair mutants. Science 260, 207–210 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Giaccia, A. J., Richardson, E., Denko, N. & Stamato, T. D. Genetic analysis of the XR-1 mutation in hamster and human hybrids. Somatic Cell Mol. Genet. 15, 71–79 (1989).

    Article  CAS  Google Scholar 

  5. Wei, Y. -F. et al. Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination. Mol. Cell. Biol. 15, 3206–3216 (1995).

    Article  CAS  Google Scholar 

  6. Wilm, M. et al. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379, 466–469 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Robins, P. & Lindahl, T. DNA ligase IV from HeLa cell nuclei. J. Biol. Chem. 271, 24257–24261 (1996).

    Article  CAS  Google Scholar 

  8. Wu, X. & Lieber, M. R. Protein–protein and protein–DNA interaction regions within the DNA end binding protein Ku70–Ku86. Mol. Cell. Biol. 16, 5186–5193 (1996).

    Article  CAS  Google Scholar 

  9. Lindahl, T. & Barnes, D. E. Mammalian DNA ligases. Annu. Rev. Biochem. 61, 251–281 (1992).

    Article  CAS  Google Scholar 

  10. Gerstein, R. M. & Lieber, M. R. Extent to which homology can constrain coding exon junctional diversity in V(D)J recombination. Nature 363, 625–627 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Reeves, W. H. & Sthoeger, Z. M. Molecular cloning of cDNA encoding the p70(Ku) lupus autoantigen. J. Biol. Chem. 264, 5047–5052 (1989).

    CAS  PubMed  Google Scholar 

  12. Mimori, T. et al. Isolation and characterization of cDNA encoding the 80-kDa subunit protein of the human autoantigen Ku (p70/80) recognized by autoantibodies from patients with scleroderma-polymyositis overlap syndrome. Proc. Natl Acad. Sci. USA 87, 1777–1781 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Hartley, K. O. et al. DNA-dependent protein kinase catalytic subunit: A relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82, 849–856 (1995).

    Article  CAS  Google Scholar 

  14. Kirchgessner, C. U. et al. DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science 267, 1178–1183 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Blunt, T. et al. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80, 813–823 (1995).

    Article  CAS  Google Scholar 

  16. Jackson, S. P. & Jeggo, P. A. DNA double-strand break repair and V(D)J recombination: involvement of DNA-PK. Trends Biochem. Sci. 20, 412–415 (1995).

    Article  CAS  Google Scholar 

  17. Hsieh, C. L., Arlett, C. F. & Lieber, M. R. V(D)J recombination in ataxia telangiectasia, Bloom's syndrome, and a DNA ligase I-associated immunodeficiency disorder. J. Biol. Chem. 268, 20105–10109 (1993).

    CAS  PubMed  Google Scholar 

  18. Petrini, J., Donovan, J. W., Dimare, C. & Weaver, D. T. Normal V(D)J coding junction formation in DNA ligase I deficiency syndromes. J. Immunol. 152, 176–183 (1994).

    CAS  PubMed  Google Scholar 

  19. Kemp, L., Sedgwick, S. & Jeggo, P. X-ray sensitive mutants of Chinese hamster ovary cells defective in double-strand rejoining. Mut. Res. 132, 189–196 (1984).

    CAS  Google Scholar 

  20. Chen, J. et al. Mammalian DNA ligase III: molecular cloning, chromsomal localization, and expression in spermatocytes undergoing meiotic recombination. Mol. Cell. Biol. 15, 5412–5422 (1995).

    Article  CAS  Google Scholar 

  21. Wilson, T. E., Grawunder, U. & Lieber, M. R. Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature 388, 495–498 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Grawunder, U., Schatz, D. G., Leu, T. M., Rolink, A. & Melchers, F. The half-life of RAG-1 protein in precursor B cells is increased in the absence of RAG-2 expression. J. Exp. Med. 183, 1731–1737 (1996).

    Article  CAS  Google Scholar 

  23. Lieber, M. R. et al. The defect in murine severe combined immune deficiency: joining of signal sequences but not coding segments in V(D)J recombination. Cell 55, 7–16 (1988).

    Article  CAS  Google Scholar 

  24. Gauss, G. & Lieber, M. R. DEAE–dextran enhances electroporation of mammalian cells. Nucleic Acids Res. 20, 6739–6740 (1992).

    Article  CAS  Google Scholar 

  25. Miller, R. D. et al. Gene for the catalytic subunit of mouse DNA-PK maps to the scid locus. Proc. Natl Acad. Sci. USA 92, 10792–10795 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Mann, M. & Wilm, M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Analyt. Biochem. 66, 4390–4399 (1994).

    Article  CAS  Google Scholar 

  27. Fuerst, T. R., Niles, E. G., Studier, F. W. & Moss, B. Eukaryotic transient expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc. Natl Acad. Sci. USA 83, 8122–8126 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Gyuris, J., Golemis, E., Chertkov, H. & Brent, R. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75, 791–803 (1993).

    Article  CAS  Google Scholar 

  29. Zervos, A., Gyuris, J. & Brent, R. Mxi1, a protein that specifically interacts with Max to bind Myc–Max recognition sites. Cell 72, 223–232 (1993).

    Article  CAS  Google Scholar 

  30. Guarente, L. Yeast promoters and lacZ fusion designed to study expression of cloned genes in yeast. Meth. Enzymol. 101, 181–191 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

U.G. is a postdoctoral fellow of the Boehringer Ingelheim Foundation. T.E.W. is a Howard Hughes Medical Institute physician postdoctoral fellow. This work was supported by grants to M.R.L. M.R.L. is a Leukemia Society of America scholar. We thank C. Hsieh, A. Kalb and M. Yaneva for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Lieber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grawunder, U., Wilm, M., Wu, X. et al. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388, 492–495 (1997). https://doi.org/10.1038/41358

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41358

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing