Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II

An Erratum to this article was published on 30 October 1997

Abstract

Repressive chromatin structures need to be unravelled to allow DNA-binding proteins access to their target sequences. This de-repression constitutes an important point at which transcription and presumably other nuclear processes can be regulated1,2. Energy-consuming enzyme complexes that facilitate the interaction of transcription factors with chromatin by modifying nucleosome structure are involved in this regulation3,4,5. One such factor, nucleosome-remodelling factor (NURF), has been isolated from Drosophila embryo extracts4,6,7. We have now identified a chromatin-accessibility complex (CHRAC) which uses energy to increase the general accessibility of DNA in chromatin. However, unlike other known chromatin remodelling factors, CHRAC can also function during chromatin assembly: it uses ATP to convert irregular chromatin into a regular array of nucleosomes with even spacing. CHRAC combines enzymes that modulate nucleosome structure and DNA topology. Using mass spectrometry, we identified two of the five CHRAC subunits as the ATPase ISWI, which is also part of NURF6,8, and topoisomerase II. The presence of ISWI in different contexts suggests that chromatin remodelling machines have a modular nature and that ISWI has a central role in different chromatin remodelling reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CHRAC assay.
Figure 2: Purification of CHRAC.
Figure 3: CHRAC targets nucleosomes.
Figure 4: ISWI and topo II co-immunoprecipitate from the crude first CM-Sepharose eluate.
Figure 5: ATPase activities of purified CHRAC and topoisomerase II.
Figure 6: a, CHRAC is an ATP-dependent spacing factor.

Similar content being viewed by others

References

  1. Kingston, R., Bunker, C. & Imbalzano, A. N. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 10, 905–920 (1996).

    Article  CAS  Google Scholar 

  2. Felsenfeld, G. Chromatin unfolds. Cell 86, 13–19 (1996).

    Article  CAS  Google Scholar 

  3. Peterson, C. L. & Tamkun, J. W. The SWI–SNF complex: a chromatin remodelling machine? Trends Biochem. Sci. 20, 143–146 (1995).

    Article  CAS  Google Scholar 

  4. Tsukiyama, T. & Wu, C. Purification and properties of an ATP-dependent nucleosome remodelling factor. Cell 83, 1011–1020 (1995).

    Article  CAS  Google Scholar 

  5. Cairns, B. R.et al. RSC, an essential, abundant chromatin-remodelling complex. Cell 87, 1249–1260 (1996).

    Article  CAS  Google Scholar 

  6. Tsukiyama, T., Daniel, C., Tamkun, J. & Wu, C. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kD subunit of the nucleosome remodelling factor. Cell 83, 1021–1026 (1995).

    Article  CAS  Google Scholar 

  7. Tsukiyama, T., Becker, P. B. & Wu, C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367, 525–532 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Elfring, L. K., Deuring, R., McCallum, C. M., Peterson, C. L. & Tamkun, J. W. Identification and characterization of Drosophila relatives of the yeast transcriptional activator SNF2/SWI2. Mol. Cell. Biol. 14, 2225–2234 (1994).

    Article  CAS  Google Scholar 

  9. Becker, P. B. & Wu, C. Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. Mol. Cell. Biol. 12, 2241–2249 (1992).

    Article  ADS  CAS  Google Scholar 

  10. . Becker, P. B., Tsukiyama, T. & Wu, C. Chromatin assembly extracts from Drosophila embryos. Meth. Cell Biol. 44, 207–223 (1994).

    Article  CAS  Google Scholar 

  11. Varga-Weisz, P. D., Blank, T. A. & Becker, P. B. Energy-dependent chromatin accessibility and nucleosome mobility in a cell-free system. EMBO J. 14, 2209–2216 (1995).

    Article  CAS  Google Scholar 

  12. Wilm, M.et al. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379, 466–469 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Mann, M. & Wilm, M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Analyt. Chem. 66, 4390–4399 (1994).

    Article  CAS  Google Scholar 

  14. Berger, J. M., Gamblin, S. J., Harrison, S. C. & Wang, J. C. Structure and mechanism of DNA topoisomerase II. Nature 379, 225–232 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Wang, W. D.et al. Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev. 10, 2117–2130 (1996).

    Article  CAS  Google Scholar 

  16. Wang, J. C. DNA topoisomerases. Annu. Rev. Biochem. 65, 635–692 (1996).

    Article  CAS  Google Scholar 

  17. Almouzni, G. & Méchali, M. Assembly of spaced chromatin. Involvement of ATP and DNA topoisomerase activity. EMBO J. 7, 4355–4365 (1988).

    Article  CAS  Google Scholar 

  18. Walter, P. P., Owen-Hughes, T. A., Coté, J. & Workman, J. L. Stimulation of transcription factor binding and histone displacement by nucleosome assembly protein 1 and nucleoplasmin requires disruption of the histone octamer. Mol. Cell. Biol. 15, 6178–6187 (1995).

    Article  CAS  Google Scholar 

  19. Chen, G. L.et al. Nonintercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J. Biol. Chem. 259, 13560–13566 (1984).

    CAS  PubMed  Google Scholar 

  20. Buchenau, P., Saumweber, H. & Arndt, J. D. Consequences of topoisomerase II inhibition in early embryogenesis of Drosophila revealed by in vivo confocal laser scanning microscopy. J. Cell Sci. 104, 1175–1185 (1993).

    CAS  PubMed  Google Scholar 

  21. Poljak, L. & Käs, E. Resolving the role of topoisomerase II in chromatin structure and function. Trends Cell Biol. 5, 348–354 (1995).

    Article  CAS  Google Scholar 

  22. Wartburton, P. E. & Earnshaw, W. C. Untangling the role of DNA topoisomerase II in mitotic chromosome structure and function. BioAssays 19, 97–99 (1997).

    Article  Google Scholar 

  23. Earnshaw, W. C., Halligan, B., Cooke, C. A., Heck, M. M. & Liu, L. F. Topoisomerase II is a structural component of mitotic chromosome scaffolds. J. Cell Biol. 100, 1706–1715 (1985).

    Article  CAS  Google Scholar 

  24. Gasser, S. M., Laroche, T., Falquet, J., Boy de la Tour, E. & Laemmli, U. K. Metaphase chromosome structure. Involvement of topoisomerase II. J. Mol. Biol. 188, 613–629 (1986).

    Article  CAS  Google Scholar 

  25. Swedlow, J. R., Sedat, J. W. & Agard, D. A. Multiple chromosomal populations of topoisomerase II detected in vivo by time-lapse, three-dimensional wide-field microscopy. Cell 73, 97–108 (1993).

    Article  CAS  Google Scholar 

  26. Sandaltzopoulos, R., Mitchelmore, C., Bonte, E., Wall, G. & Becker, P. B. Dual regulation of the Drosophila hsp26 promoter in vitro. Nucleic Acids Res. 23, 2479–2487 (1995).

    Article  CAS  Google Scholar 

  27. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Analyt. Chem. 68, 850–858 (1996).

    Article  CAS  Google Scholar 

  28. Wilm, M. & Mann, M. Analytical properties of the nanoelectrospray ion source. Analyt. Chem. 68, 1–8 (1996).

    Article  CAS  Google Scholar 

  29. Wall, G., Varga-Weisz, P. D., Sandaltzopoulos, R. & Becker, P. B. Chromatin remodelling by GAGA factor and heat shock factor at the hypersensitive Drosophila hsp26 promoter in vitro. EMBO J. 14, 1727–1736 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by an EMBO fellowship to P.D.V. and by a grant for the DFG to P.B.B. We thank T. Tsukiyama and C. Wu for a generous gift of NURF fractions and ISWI antibodies, S. Beek and J. Tamkun for antibodies against ISWI, P. Fisher and D. Arndt-Jovin for antibodies against topo II; A. Shevchenko for technical help, H. Stunnenberg for important suggestions and discussions, T. Blank and C. Garcia-Jimenez for introduction to chromatography and P. Riedinger for artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga-Weisz, P., Wilm, M., Bonte, E. et al. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388, 598–602 (1997). https://doi.org/10.1038/41587

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41587

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing