Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long-term plasticity in hippocampal place-cell representation of environmental geometry

Abstract

The hippocampus is widely believed to be involved in the storage or consolidation of long-term memories1,2,3,4. Several reports have shown short-term changes in single hippocampal unit activity during memory and plasticity experiments5,6,7,8,9,10,11,12, but there has been no experimental demonstration of long-term persistent changes in neuronal activity in any region except primary cortical areas13,14,15,16. Here we report that, in rats repeatedly exposed to two differently shaped environments, the hippocampal-place-cell representations of those environments gradually and incrementally diverge; this divergence is specific to environmental shape, occurs independently of explicit reward, persists for periods of at least one month, and transfers to new enclosures of the same shape. These results indicate that place cells may be a neural substrate for long-term incidental learning, and demonstrate the long-term stability of an experience-dependent firing pattern in the hippocampal formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Similarity of spatial firing during early exposure to circular- and square-walled enclosures.
Figure 2: Repeated exposure to circle and square enclosures increases place field divergence.
Figure 3: Schematic (a) and observed (b, c, d) incremental development of divergent firing in individual place cells. ‘Ci → Sq’ denotes transformed-circle firing-rate maps (see Methods).
Figure 4: Shape-specific firing patterns learned in one type of enclosure were reproduced in different enclosures of similar shape.

Similar content being viewed by others

References

  1. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiat. 20, 11–21 (1957).

    Article  CAS  Google Scholar 

  2. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon, Oxford, 1978).

    Google Scholar 

  3. Squire, L. R. Memory and Brain (Oxfrord Univ. Press, New York, 1987).

    Google Scholar 

  4. Cohen, N. J. & Eichenbaum, H. Memory, Amnesia and the Hippocampal System (MIT Press, Cambridge, MA, 1993).

    Google Scholar 

  5. Bostock, E., Muller, R. U. & Kubie, J. L. Experience-dependent modifications of hippocampal place cell firing. Hippocampus 1, 193–205 (1991).

    Article  CAS  Google Scholar 

  6. Kentros, C. et al. Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science 280, 2121–2126 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Muller, R. U. & Kubie, J. L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968 (1987).

    Article  CAS  Google Scholar 

  8. Wilson, M. A. & McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993).

    Article  ADS  CAS  Google Scholar 

  9. O'Keefe, J. & Speakman, A. Single unit activity in the rat hippocampus during a spatial memory task. Exp. Brain Res. 68, 1–27 (1987).

    Article  CAS  Google Scholar 

  10. Mehta, M. R., Barnes, C. A. & McNaughton, B. L. Experience-dependent, asymmetric expansion of hippocampal place fields. Proc. Natl Acad. Sci. USA 94, 8918–8921 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Mehta, M. R., Quirk, M. C. & Wilson, M. A. Experience-dependent asymmetric fields. Neuron 25, 707–715 (2000).

    Article  CAS  Google Scholar 

  12. Jeffery, K. J. in Neuronal Mechanisms of Memory Formation (ed. Holscher, C.) 100–121 (Cambridge Univ. Press, Cambridge, 2000).

    Book  Google Scholar 

  13. Merzenich, M. M. et al. Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentiation. Neuroscience 8, 33–55 (1983).

    Article  MathSciNet  CAS  Google Scholar 

  14. Clark, S. A., Allard, T., Jenkins, W. J. & Merzenich, M. M. Receptive fields in the body-surface map in adult cortex defined by temporally correlated inputs. Nature 332, 444–445 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Wang, X., Merzenich, M. M., Sameshina, K. & Jenkins, W. M. Remodelling of hand representation in adult cortex determined by timing of tactile stimulation. Nature 378, 71–75 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Weinberger, N. M., Javid, R. & Lepan, B. Long-term retention of learning-induced receptive-field plasticity in the auditory cortex. Proc. Natl Acad. Sci. USA 90, 2394–2398 (1993).

    Article  ADS  CAS  Google Scholar 

  17. O'Keefe, J., Nadel, L., Keightley, S. & Kill, D. Fornix lesions selectively abolish place learning in the rat. Exp. Neurol. 48, 152–166 (1975).

    Article  CAS  Google Scholar 

  18. Morris, R. G., Garrud, P., Rawlins, J. N. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Sutherland, R. J., Kolb, B. & Whishaw, I. Spatial mapping: definitive disruption by hippocampal or medial frontal cortical damage in the rat. Neurosci. Lett. 31, 271–276 (1982).

    Article  CAS  Google Scholar 

  20. Barnes, C. A. Spatial learning and memory processes: the search for their neurobiological mechanisms in the rat. Trends Neurosci. 11, 163–169 (1988).

    Article  CAS  Google Scholar 

  21. O'Keefe, J. & Burgess, N. Geometric determinants of the place fields of hippocampal neurons. Nature 381, 425–428 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Hartley, T., Burgess, N., Lever, C., Cacucci, F. & O'Keefe, J. Modeling place fields in terms of the cortical inputs to the hippocampus. Hippocampus 10, 369–379 (2000).

    Article  CAS  Google Scholar 

  23. Quirk, G. J., Muller, R. U., Kubie, J. L. & Ranck, J. B. The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells. J. Neurosci. 12, 1945–1963 (1992).

    Article  CAS  Google Scholar 

  24. Sharp, P. E. Subicular cells generate similar spatial firing patterns in two geometrically and visually distinctive environments: comparison with hippocampal place cells. Behav. Brain. Res. 85, 71–92 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Wood, E. R., Dudchenko, P. A. & Eichenbaum, H. The global record of memory in hippocampal neuronal activity. Nature 397, 613–616 (1999).

    Article  ADS  CAS  Google Scholar 

  26. Frank, L. M., Brown, E. M. & Wilson, M. Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27, 169–178 (2000).

    Article  CAS  Google Scholar 

  27. Tanila, H., Shapiro, M., Gallagher, M. & Eichenbaum, H. Brain aging: Changes in the nature of information coding by the hippocampus. J. Neurosci. 17, 5155–5166 (1997).

    Article  CAS  Google Scholar 

  28. Hollup, S. A., Molden, S., Donnett, J. G., Moser, M. B. & Moser, E. I. Accumulation of hippocampal place fields at the goal location in an annular watermaze task. J. Neurosci. 21, 1635–1644 (2001).

    Article  CAS  Google Scholar 

  29. O'Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

    Article  CAS  Google Scholar 

  30. Jeffery, K. J. & O'Keefe, J. Learned interaction of visual and idiothetic cues in the control of place field orientation. Exp. Brain Res. 127, 151–161 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Huxter, T. Hartley and K. Jeffery for discussion, S. Burton for reviewing the manuscript, C. Parker for technical assistance, and J. Donnett for the recording system. This work was supported by a Medical Research Council (UK) programme grant to J.O.K., MRC Advanced Studentships to C.L. and T.W., a Wellcome Trust Studentship to F.C., and Royal Society and MRC Senior Fellowships to N.B.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Colin Lever or John O'Keefe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lever, C., Wills, T., Cacucci, F. et al. Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature 416, 90–94 (2002). https://doi.org/10.1038/416090a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416090a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing